Skip to main content

Efficiently Approximating High-Dimensional Pareto Frontiers for Tree-Structured Networks Using Expansion and Compression

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

Real-world decision-making often involves working with many distinct objectives. However, as we consider a larger number of objectives, performance degrades rapidly and many instances become intractable. Our goal is to approximate higher-dimensional Pareto frontiers within a reasonable amount of time. Our work is motivated by a problem in computational sustainability that evaluates the tradeoffs between various ecological impacts of hydropower dam proliferation in the Amazon river basin. The current state-of-the-art algorithm finds a good approximation of the Pareto frontier within hours for three-objective problems, but a six-objective problem cannot be solved in a reasonable amount of time. To tackle this problem, we developed two different approaches: an expansion method, which assembles Pareto-frontiers optimized with respect to subsets of the original set of criteria, and a compression method, which assembles Pareto-frontiers optimized with respect to compressed criteria, which are a weighted sum of multiple original criteria. Our experimental results show that the aggregation of the different methods can reliably provide good approximations of the true Pareto-frontiers in practice. Source code and data are available at https://github.com/gomes-lab/Dam-Portfolio-Selection-Expansion-and-Compression-CPAIOR.

Y. Bai and Q. Shi—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hydroelectricity. https://en.wikipedia.org/wiki/Hydroelectricity. Accessed 26 Jan 2022

  2. Almeida, R.M., et al.: Reducing greenhouse gas emissions of amazon hydropower with strategic dam planning. Nat. Commun. 10(1), 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6

    Chapter  Google Scholar 

  4. Brockhoff, D., Zitzler, E.: Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_54

    Chapter  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Finer, M., Jenkins, C.N.: Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS ONE 7(4), 1–9 (2012). https://doi.org/10.1371/journal.pone.0035126

  9. Fioretto, F., Pontelli, E., Yeoh, W., Dechter, R.: Accelerating exact and approximate inference for (distributed) discrete optimization with GPUs. Constraints 23, 1–43 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flecker, A.S., et al.: Reducing adverse impacts of amazon hydropower expansion. Science 375(6582), 753–760 (2022)

    Article  Google Scholar 

  11. Fonseca, C.M., Fleming, P.J., et al.: Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In: ICGA, vol. 93, pp. 416–423 (1993)

    Google Scholar 

  12. Forsberg, B.R., et al.: The potential impact of new Andean dams on amazon fluvial ecosystems. Plos One 12(8), 1–35 (2017). https://doi.org/10.1371/journal.pone.0182254

  13. Gomes, C., et al.: Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 62(9), 56–65 (2019)

    Article  Google Scholar 

  14. Gomes-Selman, J.M., Shi, Q., Xue, Y., García-Villacorta, R., Flecker, A.S., Gomes, C.P.: Boosting efficiency for computing the Pareto frontier on tree structured networks. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 263–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_19

    Chapter  Google Scholar 

  15. Huang, D., Yi, Z., Pu, X.: Manifold-based learning and synthesis. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(3), 592–606 (2009). https://doi.org/10.1109/TSMCB.2008.2007499

  16. Kareiva, P.M.: Dam choices: analyses for multiple needs. Proc. Natl. Acad. Sci. 109(15), 5553–5554 (2012)

    Article  Google Scholar 

  17. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_27

    Chapter  MATH  Google Scholar 

  18. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1) (2015). https://doi.org/10.1145/2792984

  19. Lin, X., Zhen, H.L., Li, Z., Zhang, Q., Kwong, S.: Pareto multi-task learning (2019). https://doi.org/10.48550/ARXIV.1912.12854

  20. Ma, P., Du, T., Matusik, W.: Efficient continuous pareto exploration in multi-task learning (2020). https://doi.org/10.48550/ARXIV.2006.16434

  21. Mahapatra, D., Rajan, V.: Exact pareto optimal search for multi-task learning: touring the pareto front (2021). https://doi.org/10.48550/ARXIV.2108.00597

  22. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  23. Nowak, D., Küfer, K.H.: A ray tracing technique for the navigation on a non-convex pareto front (2020). https://doi.org/10.48550/ARXIV.2001.03634

  24. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)

    Google Scholar 

  25. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms (1985). https://www.osti.gov/biblio/5673304

  26. Soh, T., Banbara, M., Tamura, N., Le Berre, D.: Solving multiobjective discrete optimization problems with propositional minimal model generation. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 596–614. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_38

    Chapter  Google Scholar 

  27. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  28. United Nations General Assembly: Transforming our world: the 2030 agenda for sustainable development (2015). https://sdgs.un.org/2030agenda

  29. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_56

    Chapter  Google Scholar 

  30. Wiecek, M.M., Ehrgott, M., Fadel, G., Figueira, J.R.: Multiple criteria decision making for engineering (2008)

    Google Scholar 

  31. Wu, X., et al.: Efficiently approximating the pareto frontier: hydropower dam placement in the amazon basin. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  32. Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L., Tockner, K.: A global boom in hydropower dam construction. Aquat. Sci. 77(1), 161–170 (2015)

    Article  Google Scholar 

  33. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  34. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I., Levin, S.A.: Trading-off fish biodiversity, food security, and hydropower in the Mekong river basin. Proc. Natl. Acad. Sci. 109(15), 5609–5614 (2012). https://doi.org/10.1073/pnas.1201423109. https://www.pnas.org/content/109/15/5609

Download references

Acknowledgments

We thank the reviewers for all the constructive feedback. This research is supported in part by grants from the National Science Foundation, Air Force Office of Scientific Research, and Cornell Atkinson Center for Sustainability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y., Shi, Q., Grimson, M., Flecker, A., Gomes, C.P. (2023). Efficiently Approximating High-Dimensional Pareto Frontiers for Tree-Structured Networks Using Expansion and Compression. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics