Skip to main content

Breaking Symmetries with High Dimensional Graph Invariants and Their Combination

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

This paper illustrates the application of graph invariants to break symmetries for graph search problems. The paper makes two contributions: (1) the use of higher dimensional graph invariants in symmetry breaking constraints; and (2) a novel technique to obtain symmetry breaking constraints by combining graph invariants. Experimentation demonstrates that the proposed approach applies to provide new results for the generation of a particular class of cubic graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaban, A.T., Balaban, T.S.: New vertex invariants and topological indices of chemical graphs based on information on distances. J. Math. Chem. 8(1), 383–397 (1991). https://doi.org/10.1007/BF01166951

    Article  MathSciNet  Google Scholar 

  2. Brinkmann, G.: Fast generation of cubic graphs. J. Graph Theory 23(2), 139–149 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brinkmann, G., Goedgebeur, J., McKay, B.D.: Generation of cubic graphs. Discret. Math. Theor. Comput. Sci. 13, 69–80 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Cameron, R., Colbourn, C., Read, R., Wormald, N.C.: Cataloguing the graphs on 10 vertices. J. Graph Theory 9(4), 551–562 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Codish, M., Gange, G., Itzhakov, A., Stuckey, P.J.: Breaking symmetries in graphs: the nauty way. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 157–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_11

    Chapter  Google Scholar 

  6. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph representation. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013, pp. 510–516. IJCAI/AAAI (2013). https://ijcai.org/proceedings/2013

  7. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Constraints for symmetry breaking in graph representation. Constraints 24(1), 1–24 (2018). https://doi.org/10.1007/s10601-018-9294-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November 1996, pp. 148–159. Morgan Kaufmann (1996)

    Google Scholar 

  9. da F. Costa, L., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007). https://doi.org/10.1080/00018730601170527

  10. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962). https://doi.org/10.1145/367766.368168

    Article  Google Scholar 

  11. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries in a three-by-two matrix. In: Proceedings of SymCon 2003 (2003)

    Google Scholar 

  12. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  14. Hong, Y., Liu, Q., Yu, N.: Edge decomposition of connected claw-free cubic graphs. Discret. Appl. Math. 284, 246–250 (2020). https://doi.org/10.1016/j.dam.2020.03.040

    Article  MathSciNet  MATH  Google Scholar 

  15. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph Theory 30(2), 137–146 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46, 303–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, A., Prosser, P.: Diamond-free degree sequences. CoRR abs/1208.0460 (2012). https://arxiv.org/abs/1208.0460

  19. The on-line encyclopedia of integer sequences (OEIS) (2010). Published electronically at https://oeis.org

  20. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations. Ann. Discret. Math. 2, 107–120 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robinson, R.W., Wormald, N.C.: Numbers of cubic graphs. J. Graph Theory 7(4), 463–467 (1983). https://doi.org/10.1002/jgt.3190070412

    Article  MathSciNet  MATH  Google Scholar 

  22. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Discret. Appl. Math. 155(12), 1539–1548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_46

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers of this paper for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Itzhakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Itzhakov, A., Codish, M. (2023). Breaking Symmetries with High Dimensional Graph Invariants and Their Combination. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics