Skip to main content

Multi-objective Optimization for the Design of Salary Structures

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

In a context of labor shortage and strong global competition for talent, salary management is becoming a critical issue for companies wishing to attract, engage and retain qualified employees. This paper presents a multi-objective optimization model to balance the internal equity, external equity and costs trade-offs associated with the design of salary structures. Solutions are generated to estimate and explore the Pareto frontier using real compensation data from a unionized establishment in the public sector. Our work shows the interest of using combinatorial optimization techniques in the design of salary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, M., Chapman, A.: The Reward Management Toolkit: A Step-By-Step Guide to Designing and Delivering Pay and Benefits. Kogan Page, London (2011)

    Google Scholar 

  2. Barry, G., Newman, J.: Compensation, 13th edn. McGraw-Hill, New York (2019)

    Google Scholar 

  3. Branch, L.S.: Consolidated federal laws of Canada, Pay Equity Act (2021). https://laws-lois.justice.gc.ca/eng/acts/p-4.2/FullText.html. Accessed 31 Aug 2021

  4. Bruno, J.E.: Compensation of school district personnel. Manage. Sci. 17(10), B569–B587 (1971). http://www.jstor.org/stable/2628995. INFORMS

  5. Chalumeau, F., Coulon, I., Cappart, Q., Rousseau, L.-M.: SeaPearl: a constraint programming solver guided by reinforcement learning. In: Stuckey, P.J. (ed.) CPAIOR 2021. LNCS, vol. 12735, pp. 392–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78230-6_25

    Chapter  MATH  Google Scholar 

  6. Downes, P.E., Choi, D.: Employee reactions to pay dispersion: a typology of existing research. Hum. Resour. Manag. Rev. 24(1), 53–66 (2014). https://doi.org/10.1016/j.hrmr.2013.08.009

    Article  Google Scholar 

  7. Kassa, B.A.: A decision support model for salary structure design. Compensation Benefits Rev. 52(3), 109–120 (2020). https://doi.org/10.1177/0886368720905696. SAGE Publications Inc

  8. Laumanns, M., Thiele, L., Zitzler, E.: An adaptive scheme to generate the pareto front based on the epsilon-constraint method. In: Practical Approaches to Multi-Objective Optimization, 7–12 November 2004. Dagstuhl Seminar Proceedings, vol. 04461. IBFI, Schloss Dagstuhl, Germany (2005). https://doi.org/10.4230/DagSemProc.04461.6

  9. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169(3), 932–942 (2006). https://doi.org/10.1016/j.ejor.2004.08.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Mavrotas, G.: Effective implementation of the epsilon-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009). https://doi.org/10.1016/j.amc.2009.03.037

    Article  MathSciNet  MATH  Google Scholar 

  11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  12. Singh, P., Long, R.J.: Strategic compensation in Canada, 6th edn. Nelson Education Ltd., Ontario (2018). oCLC: 1292020761

    Google Scholar 

  13. St-Onge, S., Morin, G.: Gestion de la rémunération: théorie et pratique, 4e édition edn. Chenelière éducation, Montréal (2020). https://doi.org/10.7202/000155ar

  14. Wallace, M.J., Steuer, R.E.: Multiple objective linear programming in the design of internal wage structures. Acad. Manage. Proc. 1, 251–255 (1979). https://doi.org/10.5465/ambpp.1979.4977109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Alexandre Tremblay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tremblay, FA., Piché-Meunier, D., Dubois, L. (2023). Multi-objective Optimization for the Design of Salary Structures. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics