Skip to main content

Interactive Pattern Mining Using Discriminant Sub-patterns as Dynamic Features

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

Recent years have seen a shift from a pattern mining process that has users define constraints before-hand, and sift through the results afterwards, to an interactive one. This new framework depends on exploiting user feedback to learn a quality function for patterns. Existing approaches have a weakness in that they use static pre-defined low-level features, and attempt to learn independent weights representing their importance to the user. As an alternative, we propose to work with more complex features that are derived directly from the pattern ranking imposed by the user. Those features are used to learn weights to be aggregated with low-level features and help to drive the quality function in the right direction. Experiments on UCI datasets show that using higher-complexity features leads to the selection of patterns that are better aligned with a hidden quality function while being competitively fast when compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dtai.cs.kuleuven.be/CP4IM/datasets/.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th VLDB, pp. 487–499. Santiago de Chile, Chile (1994)

    Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory Comput. 8(1), 121–164 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bhuiyan, M., Hasan, M.A.: Interactive knowledge discovery from hidden data through sampling of frequent patterns. Stat. Anal. Data Min. 9(4), 205–229 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dzyuba, V., van Leeuwen, M.: Learning what matters - sampling interesting patterns. In: PAKDD 2017, Proceedings, Part I, pp. 534–546 (2017)

    Google Scholar 

  5. Dzyuba, V., van Leeuwen, M., Nijssen, S., Raedt, L.D.: Interactive learning of pattern rankings. Int. J. Artif. Intell. Tools 23(6), 1460026 (2014)

    Google Scholar 

  6. Dzyuba, V., van Leeuwen, M., De Raedt, L.: Flexible constrained sampling with guarantees for pattern mining. Data Min. Knowl. Disc. 31(5), 1266–1293 (2017). https://doi.org/10.1007/s10618-017-0501-6

    Article  MathSciNet  Google Scholar 

  7. Hien, A., Loudni, S., Aribi, N., Ouali, A., Zimmermann, A.: Code and supplementary material. https://gitlab.com/phdhien/dispale (2023)

  8. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the ACM SIGKDD KDD 2002, pp. 133–142. New York, NY, USA (2002)

    Google Scholar 

  9. Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of object ranking methods, pp. 181–201 (2010)

    Google Scholar 

  10. Morishita, S., Sese, J.: Traversing itemset lattices with statistical metric pruning. In: Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium, pp. 226–236 (2000)

    Google Scholar 

  11. Raedt, L.D., Zimmermann, A.: Constraint-based pattern set mining. In: Proceedings of the 17th SIAM ICDM 2007, Minneapolis, Minnesota, USA, pp. 237–248. SIAM (2007)

    Google Scholar 

  12. Rüping, S.: Ranking interesting subgroups. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) Proceedings of ICML 2009, vol. 382, pp. 913–920 (2009)

    Google Scholar 

  13. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l\({}_{\text{1 }}\)-regularized loss minimization. J. Mach. Learn. Res. 12, 1865–1892 (2011)

    MathSciNet  Google Scholar 

  14. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD, pp. 32–41 (2002)

    Google Scholar 

Download references

Acknowledgements

A. Hien and S. Loudni were financially support by the ANR project InvolvD (ANR-20-CE23-0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Loudni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hien, A., Loudni, S., Aribi, N., Ouali, A., Zimmermann, A. (2023). Interactive Pattern Mining Using Discriminant Sub-patterns as Dynamic Features. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics