Skip to main content

The Common-Neighbors Metric Is Noise-Robust and Reveals Substructures of Real-World Networks

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

Real-world networks typically display a complex structure that is hard to explain by a single model. A common approach is to partition the edges of the network into disjoint simpler structures. An important property in this context is locality—incident vertices usually have many common neighbors. This allows to classify edges into two groups, based on the number of the common neighbors of their incident vertices. Formally, this is captured by the common-neighbors (CN) metric, which forms the basis of many metrics for detecting outlier edges. Such outliers can be interpreted as noise or as a substructure.

We aim to understand how useful the metric is, and empirically analyze several scenarios. We randomly insert outlier edges into real-world and generated graphs with high locality, and measure the metric accuracy for partitioning the combined edges. In addition, we use the metric to decompose real-world networks, and measure properties of the partitions. Our results show that the CN metric is a very good classifier that can reliably detect noise up to extreme levels (83% noisy edges). We also provide mathematically rigorous analyses on special random-graph models. Last, we find the CN metric consistently decomposes real-world networks into two graphs with very different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Outlier Detection in Graphs and Networks, pp. 369–397 (2017)

    Google Scholar 

  2. Aggarwal, C.C., He, G., Zhao, P.: Edge classification in networks. In: ICDE, pp. 1038–1049 (2016)

    Google Scholar 

  3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bläsius, T., Fischbeck, P.: On the external validity of average-case analyses of graph algorithms. In: 30th Annual European Symposium on Algorithms (ESA 2022), vol. 244, pp. 21:1–21:14 (2022). https://doi.org/10.4230/LIPIcs.ESA.2022.21

  5. Bläsius, T., Fischbeck, P.: On the External Validity of Average-Case Analyses of Graph Algorithms (Data, Docker, and Code), May 2022

    Google Scholar 

  6. Chakrabarti, D.: AutoPart: parameter-free graph partitioning and outlier detection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 112–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_13

    Chapter  Google Scholar 

  7. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2006)

    Google Scholar 

  8. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297 (1959)

    Article  MathSciNet  Google Scholar 

  9. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: ICPR, vol. 3, pp. 430–433 (2004)

    Google Scholar 

  10. Kou, Y., Lu, C.T., Dos Santos, R.F.: Spatial outlier detection: a graph-based approach. In: ICTAI, vol. 1, pp. 281–288 (2007)

    Google Scholar 

  11. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  13. Mansour, R.F., Abdel-Khalek, S., Hilali-Jaghdam, I., Nebhen, J., Cho, W., Joshi, G.P.: An intelligent outlier detection with machine learning empowered big data analytics for mobile edge computing. Clust. Comput. (2021)

    Google Scholar 

  14. Newman, M., Barabási, A., Watts, D.: The Structure and Dynamics of Networks. Princeton Studies in Complexity, Princeton University Press (2011)

    Google Scholar 

  15. Pandhre, S., Gupta, M., Balasubramanian, V.N.: Community-based outlier detection for edge-attributed graphs. CoRR abs/1612.09435 (2016)

    Google Scholar 

  16. Penrose, M.: Random Geometric Graphs, vol. 5. OUP Oxford (2003)

    Google Scholar 

  17. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015)

    Google Scholar 

  18. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  Google Scholar 

  19. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale complex network analysis (2015)

    Google Scholar 

  20. Suri, N.N.R.R., Murty, N.M., Athithan, G.: Outlier Detection: Techniques and Applications. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05127-3

  21. Zhang, H., Kiranyaz, S., Gabbouj, M.: Outlier edge detection using random graph generation models and applications. J. Big Data 4(1), 1–25 (2017). https://doi.org/10.1186/s40537-017-0073-8

    Article  Google Scholar 

  22. Zhang, H., Kiranyaz, S., Gabbouj, M.: Data clustering based on community structure in mutual k-nearest neighbor graph. In: TSP, pp. 1–7 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Fischbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, S., Fischbeck, P., Friedrich, T., Krejca, M. (2023). The Common-Neighbors Metric Is Noise-Robust and Reveals Substructures of Real-World Networks. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics