Abstract
This paper studies an effective unsupervised deep learning model for multivariate time series anomaly detection. Since multivariate time series usually have problems of insufficient labeling and highly-complex temporal correlation, effectively detecting anomalies in multivariate time series data is particularly challenging. To solve this problem, we propose a model named Wasserstein-GAN with gradient Penalty and effective Scoring (WPS). In this model, Wasserstein Distance with Gradient Penalty helps to capture the data regularities between generator output and real data, thus improving the training stability. Meanwhile, an effective scoring function that consists of reconstruction error, discrimination error, and prediction error is designed to evaluate the accuracy of the abnormal prediction and recall. The experimental results show that compared with the suboptimal baseline model, our proposed WPS obtains 17.68% and 10.41% improvement in prediction precision and F1 score, respectively.
This research was supported by the Science and Technology Program of Sichuan Province under Grant No. 2020JDRC0067, No. 2023JDRC0087, and No. 2020YFG0326, and the Talent Program of Xihua University under Grant No. Z202047 and No. Z222001.
S. Qi and J. ChenāContributed to the work equally and should be regarded as co-first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscipl. Rev.: Comput. Stat. 2(4), 433ā459 (2010)
Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15ā27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214ā223. PMLR (2017)
Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395ā3404 (2020)
Bashar, M.A., Nayak, R.: Tanogan: time series anomaly detection with generative adversarial networks. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1778ā1785. IEEE (2020)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93ā104 (2000)
Chen, P., et al.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. (2022)
Garg, A., Zhang, W., Samaran, J., Savitha, R., Foo, C.S.: An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE Trans. Neural Networks Learn. Syst. 33(6), 2508ā2517 (2021)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139ā144 (2020)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMS and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387ā395 (2018)
Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: variants, applications, and training. ACM Comput. Surv. (CSUR) 54(8), 1ā49 (2021)
Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., KÅÆrkovĆ”, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703ā716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56
Li, Y., Peng, X., Zhang, J., Li, Z., Wen, M.: DCT-GAN: dilated convolutional transformer-based GAN for time series anomaly detection. IEEE Trans. Knowl. Data Eng. 35, 3632ā3644 (2021)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413ā422. IEEE (2008)
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: ESANN, vol. 2015, p. 89 (2015)
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1ā38 (2021)
Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544ā1551 (2018)
Pena, E.H., de Assis, M.V., ProenƧa, M.L.: Anomaly detection using forecasting methods Arima and HWDS. In: 2013 32nd International Conference of the Chilean Computer Science Society (SCCC), pp. 63ā66. IEEE (2013)
Schƶlkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, vol. 12 (1999)
Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 42(3), 1ā21 (2017)
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828ā2837 (2019)
Wen, P., Yang, Z., Wu, L., Qi, S., Chen, J., Chen, P.: A novel convolutional adversarial framework for multivariate time series anomaly detection and explanation in cloud environment. Appl. Sci. 12(20), 10390 (2022)
Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIS in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187ā196 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qi, S., Chen, J., Chen, P., Wen, P., Shan, W., Xiong, L. (2023). An Effective WGAN-Based Anomaly Detection Model for IoT Multivariate Time Series. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-33374-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33373-6
Online ISBN: 978-3-031-33374-3
eBook Packages: Computer ScienceComputer Science (R0)