Skip to main content

Using Flexible Memories to Reduce Catastrophic Forgetting

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13936))

Included in the following conference series:

  • 907 Accesses

Abstract

In continual learning, a primary factor of catastrophic forgetting is task-recency bias, which arises when a model is trained on an imbalanced set of new and old task instances. Recent studies have shown the effectiveness of rehearsal-based continual learning methods; however, a major drawback of these methods is the loss of accuracy on older tasks when training is biased towards newer tasks. To bridge this gap, we propose a \(\lambda \) Stability Wrapper (\(\lambda \)SW), where the learner uses a task-based policy to adjust the probability of when instances are replaced in memory to account for task-recency bias to alleviate catastrophic forgetting. The policy results in an increased number of instances seen from older tasks. By construction, \(\lambda \)SW can be applied with other rehearsal-based continual learning algorithms. We validate the effectiveness of \(\lambda \)SW with three well known baseline methods: Gradient-based Sample Selection, Experience Replay, and Maximally Interfered Retrieval. Our experimental results show significant gains in accuracy on eleven out of twelve of our experiments across four datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: continual learning with a memory of diverse samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218–8227 (2021)

    Google Scholar 

  4. Belouadah, E., Popescu, A.: IL2M: class incremental learning with dual memory. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 583–592 (2019)

    Google Scholar 

  5. Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau, J., Belilovsky, E.: New insights on reducing abrupt representation change in online continual learning. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=N8MaByOzUfb

  6. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  7. Chaudhry, A., et al.: On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486 (2019)

  8. Chen, Z., Liu, B.: Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3), 1–207 (2018)

    Google Scholar 

  9. Ebrahimi, S., Elhoseiny, M., Darrell, T., Rohrbach, M.: Uncertainty-guided continual learning in Bayesian neural networks, pp. 75–78 (2019)

    Google Scholar 

  10. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf. Process. Lett. 97(5), 181–185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grossberg, S.: How does a brain build a cognitive code? In: Grossberg, S. (ed.) Studies of Mind and Brain, pp. 1–52. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7758-7_1

  12. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  13. Jastrzebski, S., et al.: The break-even point on optimization trajectories of deep neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  14. Jin, X., Sadhu, A., Du, J., Ren, X.: Gradient-based editing of memory examples for online task-free continual learning. Adv. Neural. Inf. Process. Syst. 34, 29193–29205 (2021)

    Google Scholar 

  15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Citeseer (2009)

    Google Scholar 

  16. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual learning in image classification: an empirical survey. Neurocomputing 469, 28–51 (2022)

    Article  Google Scholar 

  18. Mallya, A., Lazebnik, S.: Packnet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  19. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  20. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-100). Citeseer (1996)

    Google Scholar 

  21. Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R., Khan, M.E.E.: Continual deep learning by functional regularisation of memorable past. Adv. Neural. Inf. Process. Syst. 33, 4453–4464 (2020)

    Google Scholar 

  22. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328 (2017)

    Google Scholar 

  23. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  24. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for continual learning. In: Advances in Neural Information Processing Systems, pp. 350–360 (2019)

    Google Scholar 

  25. Sun, S., Calandriello, D., Hu, H., Li, A., Titsias, M.: Information-theoretic online memory selection for continual learning. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=IpctgL7khPp

  26. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  27. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3014–3023 (2021)

    Google Scholar 

  29. Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent processing in neural networks. Nat. Mach. Intell. 1(8), 364–372 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wernsen Wong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 242 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, W., Koh, Y.S., Dobbie, G. (2023). Using Flexible Memories to Reduce Catastrophic Forgetting. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13936. Springer, Cham. https://doi.org/10.1007/978-3-031-33377-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33377-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33376-7

  • Online ISBN: 978-3-031-33377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics