Skip to main content

pFedV: Mitigating Feature Distribution Skewness via Personalized Federated Learning with Variational Distribution Constraints

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

Statistical heterogeneity, especially feature distribution skewness, among the distributed data is a common phenomenon in practice, which is a challenging problem in federated learning that can lead to a degradation in the performance of the aggregated global model. In this paper, we introduce pFedV, a novel approach that leverages a variational inference perspective by incorporating a variational distribution into neural networks. During training, we add the KL-divergence term to the loss function to constrain the output distribution of layers for feature extraction and personalize the final layer of models. The experimental results demonstrate the effectiveness of our approaches in mitigating the distribution shift in feature space in federated learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The variational distribution is the output of the encoder parameterized by \(\theta \), which is equivalent to \(\theta _g\) in the previous section.

  2. 2.

    We omitted x in the formula since all distributions are given the condition of \({\textbf {x}}\), e.g., \(q_\theta ({\textbf {z}}) = q_\theta ({\textbf {z}} \vert {\textbf {x}})\).

References

  1. Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., Jararweh, Y.: Federated learning review: fundamentals, enabling technologies, and future applications. Inf. Process. Manage. 59(6), 103061 (2022)

    Article  Google Scholar 

  2. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622. PMLR (2015)

    Google Scholar 

  4. Chen, H.Y., Chao, W.L.: FedBE: Making Bayesian model ensemble applicable to federated learning. arXiv preprint arXiv:2009.01974 (2020)

  5. Geng, J., et al.: Towards general deep leakage in federated learning. arXiv preprint arXiv:2110.09074 (2021)

  6. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  7. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: Stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  8. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for internet of things: recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutorials PP, 1 (2021)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  10. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-IID data silos: an experimental study. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 965–978. IEEE (2022)

    Google Scholar 

  11. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  12. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proceed. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  13. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IID data. arXiv preprint arXiv:1907.02189 (2019)

  14. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: Federated learning on non-IID features via local batch normalization. arXiv preprint arXiv:2102.07623 (2021)

  15. Liu, L., Zheng, F., Chen, H., Qi, G.J., Huang, H., Shao, L.: A bayesian federated learning framework with online Laplace approximation. arXiv preprint arXiv:2102.01936 (2021)

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Mou, Y., Geng, J., Welten, S., Rong, C., Decker, S., Beyan, O.: Optimized federated learning on class-biased distributed data sources. In: Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol. 1524, pp. 146–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93736-2_13

  18. Nguyen, D.C., et al.: Federated learning for smart healthcare: a survey. ACM Comput. Surv. (CSUR) 55(3), 1–37 (2022)

    Article  Google Scholar 

  19. Odaibo, S.: Tutorial: Deriving the standard variational autoencoder (VAE) loss function. arXiv preprint arXiv:1907.08956 (2019)

  20. Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: On the convergence of federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 3, 3 (2018)

  21. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  22. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  23. Yang, W., Zhang, Y., Ye, K., Li, L., Xu, C.-Z.: FFD: a federated learning based method for credit card fraud detection. In: Chen, K., Seshadri, S., Zhang, L.-J. (eds.) BIGDATA 2019. LNCS, vol. 11514, pp. 18–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23551-2_2

    Chapter  Google Scholar 

  24. Zhang, X., Li, Y., Li, W., Guo, K., Shao, Y.: Personalized federated learning via variational Bayesian inference. In: International Conference on Machine Learning, pp. 26293–26310. PMLR (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Ministry for Research and Education (BMBF) projects CORD_MI, POLAR_MI, Leuko-Expert and WestAI (Grant no. No. 01ZZ1911M, 01ZZ1910E, ZMVI1-2520DAT94C and 01IS22094D, respectively), CLARIFY Project (Marie Skłodowska-Curie under Grant no. 860627), and by National Natural Science Foundation of China (NSFC) Project (No. 62106121). This research was supported by Public Computing Cloud, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mou, Y., Geng, J., Zhou, F., Beyan, O., Rong, C., Decker, S. (2023). pFedV: Mitigating Feature Distribution Skewness via Personalized Federated Learning with Variational Distribution Constraints. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13936. Springer, Cham. https://doi.org/10.1007/978-3-031-33377-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33377-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33376-7

  • Online ISBN: 978-3-031-33377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics