Skip to main content

Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13937))

Included in the following conference series:

Abstract

The healthcare industry has a wealth of data that can be used by researchers and medical professionals to infer a patient’s condition and intention to receive treatment using machine learning models. However, this line of research generally suffers from some limitations: (1) struggling to leverage structural interactions among patients; (2) attending to learn patient representations from electronic medical records (EMRs) but rarely considering supplementary contexts; and (3) overlooking EMR data imbalance issue. To address these limitations, in this paper, we propose a hierarchical graph neural network for patient treatment preference prediction. Doctors’ information and their viewing activities are first integrated as external knowledge with EMRs to construct the hierarchical graph, where a dual message passing paradigm is then devised to perform intra- and inter-subgraph aggregation to enrich patient representations and advance label propagation. To mitigate patient data imbalance issue, a community detection method is further designed to better prediction. Our experimental results demonstrate the state-of-the-art performance on patient treatment preference prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando, S., Huang, C.Y.: Deep over-sampling framework for classifying imbalanced data. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 770–785. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_46

    Chapter  Google Scholar 

  2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  3. Cai, D., Sun, C., Song, M., Zhang, B., Hong, S., Li, H.: Hypergraph contrastive learning for electronic health records. In: SDM, pp. 127–135. SIAM (2022)

    Google Scholar 

  4. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  5. Chen, L., Li, X., Wu, D.: Enhancing robustness of graph convolutional networks via dropping graph connections. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 412–428. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67664-3_25

    Chapter  Google Scholar 

  6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: SIGKDD, pp. 785–794 (2016)

    Google Scholar 

  7. Chipidza, F.E., Wallwork, R.S., Stern, T.A.: Impact of the doctor-patient relationship. The primary care companion for CNS disorders 17(5), 27354 (2015)

    Google Scholar 

  8. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based attention model for healthcare representation learning. In: SIGKDD (2017)

    Google Scholar 

  9. Choi, E., et al.: Learning the graphical structure of electronic health records with graph convolutional transformer. In: AAAI. vol. 34, pp. 606–613 (2020)

    Google Scholar 

  10. Chu, J., Dong, W., Wang, J., He, K., Huang, Z.: Treatment effect prediction with adversarial deep learning using electronic health records. In: BMC MIDM (2020)

    Google Scholar 

  11. Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: Conan: complementary pattern augmentation for rare disease detection. In: AAAI (2020)

    Google Scholar 

  12. Dossa, F., Chesney, T.R., Acuna, S.A., Baxter, N.N.: A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: a systematic review and meta-analysis. The lancet Gastroenterology & hepatology 2(7), 501–513 (2017)

    Article  Google Scholar 

  13. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI. vol. 17, pp. 973–978. Lawrence Erlbaum Associates Ltd (2001)

    Google Scholar 

  14. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artifi. Intell. Res. 61, 863–905 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghorbani, M., Kazi, A., Baghshah, M.S., Rabiee, H.R., Navab, N.: Ra-gcn: graph convolutional network for disease prediction problems with imbalanced data. Med. Image Anal. 75, 102272 (2022)

    Article  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Lee, W., Seo, K.: Downsampling for binary classification with a highly imbalanced dataset using active learning. Big Data Res. 28, 100314 (2022)

    Article  Google Scholar 

  18. Li, Q., Li, X., Chen, L., Wu, D.: Distilling Knowledge on Text Graph for Social Media Attribute Inference. In: SIGIR, pp. 2024–2028 (2022)

    Google Scholar 

  19. Li, X., Chen, L., Wu, D.: Turning attacks into protection: Social media privacy protection using adversarial attacks. In: SDM, pp. 208–216. SIAM (2021)

    Google Scholar 

  20. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

    Article  Google Scholar 

  21. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalance problem. Encyclopedia Mach. Learn. 2011, 231–235 (2008)

    Google Scholar 

  22. Liu, R., Wei, L., Zhang, P.: A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. Nature Mach. Intell. 3(1), 68–75 (2021)

    Article  Google Scholar 

  23. Liu, Y., et al.: Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018)

  24. Liu, Z., Li, X., Peng, H., He, L., Philip, S.Y.: Heterogeneous similarity graph neural network on electronic health records. In: IEEE Big Data (2020)

    Google Scholar 

  25. Ma, F., Wang, Y., Gao, J., Xiao, H., Zhou, J.: Rare disease prediction by generating quality-assured electronic health records. In: SDM, pp. 514–522. SIAM (2020)

    Google Scholar 

  26. Ma, F., You, Q., Xiao, H., Chitta, R., Zhou, J., Gao, J.: Kame: Knowledge-based attention model for diagnosis prediction in healthcare. In: CIKM (2018)

    Google Scholar 

  27. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)

    Article  Google Scholar 

  28. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)

  29. Ross, M.K., Yoon, J., van der Schaar, A., van der Schaar, M.: Discovering pediatric asthma phenotypes on the basis of response to controller medication using machine learning. Ann. Am. Thorac. Soc. 15(1), 49–58 (2018)

    Article  Google Scholar 

  30. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the national academy of sciences (2008)

    Google Scholar 

  31. Saqib, M., Sha, Y., Wang, M.D.: Early prediction of sepsis in emr records using traditional ml techniques and deep learning lstm networks. In: EMBC (2018)

    Google Scholar 

  32. Segura-Bedmar, I., Colón-Ruíz, C., Tejedor-Alonso, M.Á., Moro-Moro, M.: Predicting of anaphylaxis in big data emr by exploring machine learning approaches. J. Biomed. Inform. 87, 50–59 (2018)

    Article  Google Scholar 

  33. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.J.: Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

  34. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: ICDM, pp. 1151–1156. IEEE (2013)

    Google Scholar 

  35. Yang, J., Liu, Y., Qian, M., Guan, C., Yuan, X.: Information extraction from electronic medical records using multitask recurrent neural network with contextual word embedding. Appl. Sci. 9(18), 3658 (2019)

    Article  Google Scholar 

  36. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. NeurIPS 33, 19290–19301 (2020)

    Google Scholar 

  37. Zhao, J., Gu, S., McDermaid, A.: Predicting outcomes of chronic kidney disease from emr data based on random forest regression. In: Mathematical biosciences (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q., Chen, L., Cai, Y., Wu, D. (2023). Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13937. Springer, Cham. https://doi.org/10.1007/978-3-031-33380-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33380-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33379-8

  • Online ISBN: 978-3-031-33380-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics