Skip to main content

What Boosts Fake News Dissemination on Social Media? A Causal Inference View

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13938))

Included in the following conference series:

  • 729 Accesses

Abstract

There has been an upward trend of fake news propagation on social media. To solve the fake news propagation problem, it is crucial to understand which media posts (e.g., tweets) cause fake news to disseminate widely, and further what lexicons inside a tweet play essential roles for the propagation. However, only modeling the correlation between social media posts and dissemination will find a spurious relationship between them, provide imprecise dissemination prediction, and incorrect important lexicons identification because it did not eliminate the effect of the confounder variable. Additionally, existing causal inference models cannot handle numerical and textual covariates simultaneously. Thus, we propose a novel causal inference model that combines the textual and numerical covariates through soft-prompt learning, and removes irrelevant information from the covariates by conditional treatment generation toward learning effective confounder representation. Then, the model identifies critical lexicons through a post-hoc explanation method. Our model achieves the best performance against baseline methods on two fake news benchmark datasets in terms of dissemination prediction and important lexicon identification related to the dissemination. The code is available at https://github.com/bigheiniu/CausalFakeNews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A news tweet means a tweet mentions a certain news.

  2. 2.

    We leave the syntax self-interpreted causal inference model as our future work.

  3. 3.

    Due to space limit, we only report the fake news’ tweets.

References

  1. Aldous, K.K., An, J., Jansen, B.J.: View, like, comment, post: analyzing user engagement by topic at 4 levels across 5 social media platforms for 53 news organizations. In: ICWSM (2019)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Chen, H., Ji, Y.: Learning variational word masks to improve the interpretability of neural text classifiers. In: EMNLP (2020)

    Google Scholar 

  4. Cheng, L., Guo, R., Shu, K., Liu, H.: Causal understanding of fake news dissemination on social media. In: KDD (2021)

    Google Scholar 

  5. Deng, Z., Zheng, X., Tian, H., Zeng, D.D.: Deep causal learning: representation, discovery and inference. arXiv preprint arXiv:2211.03374 (2022)

  6. Egami, N., Fong, C.J., Grimmer, J., Roberts, M.E., Stewart, B.M.: How to make causal inferences using texts. CoRR abs/1802.02163 (2018)

    Google Scholar 

  7. Fytas, P., Rizos, G., Specia, L.: What makes a scientific paper be accepted for publication? (2021)

    Google Scholar 

  8. Indhiarti, T.R., Chaerunnisa, E.R.: A corpus-driven collocation analysis of degree adverb very, really, quite, and pretty (2020)

    Google Scholar 

  9. Keith, K.A., Jensen, D., O’Connor, B.: Text and causal inference: a review of using text to remove confounding from causal estimates. In: ACL (2020)

    Google Scholar 

  10. Kilgo, D.K., Sinta, V.: Six things you didn’t know about headline writing: sensationalistic form in viral news content from traditional and digitally native news organizations. In: ISOJ, vol. 6, pp. 111–130 (2016)

    Google Scholar 

  11. Kushin, M.J., Yamamoto, M.: Did social media really matter? college students’ use of online media and political decision making in the 2008 election. Mass Commun. Soc. 13(5), 608–630 (2010)

    Article  Google Scholar 

  12. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In: EMNLP (2021)

    Google Scholar 

  13. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL (2020)

    Google Scholar 

  14. Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J.: Gpt understands, too (2021)

    Google Scholar 

  15. Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. In: NeurIPS (2017)

    Google Scholar 

  16. Miao, W., Geng, Z., Tchetgen Tchetgen, E.J.: Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika 105(4), 987–993 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, D.: Comparing automatic and human evaluation of local explanations for text classification. In: NAACL HLT (2018)

    Google Scholar 

  18. Park, K., Kwak, H., An, J., Chawla, S.: How-to present news on social media: a causal analysis of editing news headlines for boosting user engagement. In: ICWSM (2021)

    Google Scholar 

  19. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  20. Pearl, J., Bareinboim, E.: Transportability of causal and statistical relations: a formal approach. In: AAAI (2011)

    Google Scholar 

  21. Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in twitter. In: ICWSM, The AAAI Press (2011)

    Google Scholar 

  22. Pryzant, R., Basu, S., Sone, K.: Interpretable neural architectures for attributing an ad’s performance to its writing style. In: EMNLP Workshop BlackboxNLP (2018)

    Google Scholar 

  23. Pryzant, R., Card, D., Jurafsky, D., Veitch, V., Sridhar, D.: Causal effects of linguistic properties. In: NAACL HLT (2021)

    Google Scholar 

  24. Pryzant, R., joo Chung, Y., Jurafsky, D.: Predicting sales from the language of product descriptions. In: eCOM@SIGIR (2017)

    Google Scholar 

  25. Pryzant, R., Shen, K., Jurafsky, D., Wagner, S.: Deconfounded lexicon induction for interpretable social science (2018)

    Google Scholar 

  26. Qin, G., Eisner, J.: Learning how to ask: Querying LMS with mixtures of soft prompts. In: NAACL-HLT (2021)

    Google Scholar 

  27. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should I trust you?": Explaining the predictions of any classifier. In: KDD (2016)

    Google Scholar 

  28. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  29. Shi, C., Blei, D.M., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS (2019)

    Google Scholar 

  30. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context and dynamic information for studying fake news on social media. arXiv preprint arXiv:1809.01286 (2018)

  31. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  32. Strekalova, Y.A., Krieger, J.L.: Beyond words: amplification of cancer risk communication on social media. J. Health Commun. 22(10), 849–857 (2017)

    Article  Google Scholar 

  33. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: SocialCom (2010)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  35. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  36. Zhang, Y.F., Zhang, H., Lipton, Z.C., Li, L.E., Xing, E.P.: Can transformers be strong treatment effect estimators? arXiv preprint arXiv:2202.01336 (2022)

Download references

Acknowledgement

This work was supported in part by NSF grant CNS-1755536 and WPI TRIAD. Any opinions, findings and conclusions or recommendations expressed in this material are the author(s) and do not necessarily reflect those of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Lee, K., Kordzadeh, N., Guo, R. (2023). What Boosts Fake News Dissemination on Social Media? A Causal Inference View. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13938. Springer, Cham. https://doi.org/10.1007/978-3-031-33383-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33383-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33382-8

  • Online ISBN: 978-3-031-33383-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics