Skip to main content

MOSAIK: An Agent-Based Decentralized Control System with Stigmergy for a Transportation Scenario

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Abstract

We investigate possibilities for implementing the decentralized control of transporters with Semantic Web agents to fulfill a given transportation task. We present the MOSAIK framework as a system to build and simulate agents to control transporters using stigmergy for communication, and self-organize based on local decisions. Our framework uses Semantic Web technologies because the communication paradigm of stigmergy directly maps to the REST constraints of the application architecture of the web. The system achieves self-organization by implementing a combination of simple reflex web agents that coordinate using web resources as environment for stigmergy. Finally, we evaluate our system compared to an agent-based simulation and discuss requirements of decentralized systems on the Semantic Web using stigmergy.

This work was funded by the German Federal Ministry of Education and Research through the MOSAIK project (grant no. 01IS18070A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference between writing a property and submitting a task is that writing has to happen instantaneously while the task triggers an action that can take more time.

  2. 2.

    :Products are not manipulated by the agents directly, but merely indirectly as consequence of manipulations of :Transporters or :Stations.

  3. 3.

    https://solid.ti.rw.fau.de/public/ns/arena#.

  4. 4.

    https://linked-data-fu.github.io/.

  5. 5.

    http://www.w3.org/2000/10/swap/log#.

  6. 6.

    http://www.w3.org/2011/http#.

  7. 7.

    http://www.w3.org/2011/http-methods#.

  8. 8.

    https://github.com/bold-benchmark/bold-server.

  9. 9.

    https://github.com/wintechis/mosaik-runtime-documentation.

  10. 10.

    https://github.com/wintechis/mosaik-runtime-documentation.

References

  1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F.: Multi-robot cooperation in the MARTHA project. IEEE Robot. Autom. Mag. 5(1), 36–47 (1998). https://doi.org/10.1109/100.667325

    Article  Google Scholar 

  2. Berners-Lee, T.: Notation3 logic - an RDF language for the Semantic Web. https://www.w3.org/DesignIssues/Notation3.html

  3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Santa Fe Institute Studies on the Sciences of Complexity (1999)

    Google Scholar 

  4. Charpenay, V., Käfer, T., Harth, A.: A unifying framework for agency in hypermedia environments. In: Alechina, N., Baldoni, M., Logan, B. (eds.) EMAS 2021. LNCS, pp. 42–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97457-2_3

    Chapter  Google Scholar 

  5. Charpenay, V., et al.: MOSAIK: a formal model for self-organizing manufacturing systems. IEEE Pervasive Comput. 20(1), 9–18 (2021). https://doi.org/10.1109/MPRV.2020.3035837

    Article  Google Scholar 

  6. Chen, B., Cheng, H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497 (2010)

    Article  Google Scholar 

  7. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2018). https://doi.org/10.1109/ACCESS.2017.2783682

    Article  Google Scholar 

  8. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Rob. 25(4), 912–926 (2009). https://doi.org/10.1109/TRO.2009.2022423

    Article  Google Scholar 

  9. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  10. Giordani, S., Lujak, M., Martinelli, F.: A distributed multi-agent production planning and scheduling framework for mobile robots. Comput. Ind. Eng. 64, 19–30 (2013). https://doi.org/10.1016/j.cie.2012.09.004

    Article  Google Scholar 

  11. Grassé, P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959). https://doi.org/10.1007/BF02223791

  12. Hadeli, K., et al.: Self-organising in multi-agent coordination and control using stigmergy. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 105–123. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24701-2_8

    Chapter  MATH  Google Scholar 

  13. Hadeli, K., Valckenaers, P., Kollingbaum, M.J., Brussel, H.V.: Multi-agent coordination and control using stigmergy. Comput. Ind. 53(1), 75–96 (2004)

    Article  MATH  Google Scholar 

  14. Hamann, H.: Swarm Robotics: A Formal Approach, pp. 1–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2_1

  15. Harth, A.: Interoperation between information spaces on the web. In: Grust, T., et al. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 44–53. Springer, Heidelberg (2006). https://doi.org/10.1007/11896548_5

    Chapter  Google Scholar 

  16. Harth, A., Käfer, T.: Linked data techniques for the web of things: Tutorial. In: Proceedings of the 8th International Conference on the Internet of Things. IOT 2018, Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3277593.3277641

  17. Heylighen, F.: Stigmergy as a universal coordination mechanism i: Definition and components. Cogn. Syst. Res. 38, 4–13 (2016). https://www.sciencedirect.com/science/article/pii/S1389041715000327

  18. Heylighen, F.: The science of self-organization and adaptivity. Encycl. Life Support Syst. 5, 253–280 (1970)

    MATH  Google Scholar 

  19. Heylighen, F.: Stigmergy as a universal coordination mechanism ii: varieties and evolution. Cogn. Syst. Res. 38, 50–59 (2016)

    Article  Google Scholar 

  20. Holland, O., Melhuish, C.: Stimergy, self-organization, and sorting in collective robotics. Artif. Life 5, 173–202 (1999)

    Article  Google Scholar 

  21. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of Things (WoT) Thing Description, W3C Recommendation. Accessed 18 Oct 2021 (2020)

    Google Scholar 

  22. Klein, N.: The impact of decentral dispatching strategies on the performance of intralogistics transport systems (2012). https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-147739

  23. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans. Database Syst. 6(2), 213–226 (1981)

    Article  Google Scholar 

  24. Parker, L.E.: Multiple Mobile Robot Systems, pp. 921–941. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_41

  25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall Press, USA (2009)

    MATH  Google Scholar 

  26. Schmid, S., Schraudner, D., Harth, A.: Performance comparison of simple reflex agents using stigmergy with model-based agents in self-organizing transportation. In: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), pp. 93–98 (2021). https://doi.org/10.1109/ACSOS-C52956.2021.00071

  27. Schmidt, T., Reith, K.B., Klein, N., Däumler, M.: Research on decentralized control strategies for automated vehicle-based in-house transport systems - a survey. Logistics Res. 13, 10 (2020). https://doi.org/10.23773/2020_10

  28. Schraudner, D.: Stigmergic multi-agent systems in the semantic web of things. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12739, pp. 218–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80418-3_34

    Chapter  Google Scholar 

  29. Schraudner, D., Harth, A.: A RESTful interaction model for semantic digital twins. In: Proceedings of the Third International Workshop on Semantic Digital Twins co-located with the 19th Extended Semantic Web Conference (ESWC 2022) (2022)

    Google Scholar 

  30. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommendation (2015)

    Google Scholar 

  31. Taillandier, P., et al.: Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica 23(2), 299–322 (2019)

    Article  Google Scholar 

  32. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5, 97–116 (1999). https://doi.org/10.1162/106454699568700

    Article  Google Scholar 

  33. Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS, pp. 141–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71103-2_8

    Chapter  Google Scholar 

  34. Dyke Parunak, H.: A survey of environments and mechanisms for human-human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11678809_10

    Chapter  Google Scholar 

  35. Zedadra, O., Jouandeau, N., Seridi, H., Fortino, G.: Multi-agent foraging: state-of-the-art and research challenges. Complex Adapt. Syst. Model. 5(1), 3 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmid, S., Schraudner, D., Harth, A. (2023). MOSAIK: An Agent-Based Decentralized Control System with Stigmergy for a Transportation Scenario. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics