Skip to main content

Structural Bias in Knowledge Graphs for the Entity Alignment Task

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Included in the following conference series:

Abstract

Knowledge Graphs (KGs) have recently gained attention for representing knowledge about a particular domain and play a central role in a multitude of AI tasks like recommendations and query answering. Recent works have revealed that KG embedding methods used to implement these tasks often exhibit direct forms of bias (e.g., related to gender, nationality, etc.) leading to discrimination. In this work, we are interested in the impact of indirect forms of bias related to the structural diversity of KGs in entity alignment (EA) tasks. In this respect, we propose an exploration-based sampling algorithm, SUSIE, that generates challenging benchmark data for EA methods, with respect to structural diversity. SUSIE requires setting the value of a single hyperparameter, which affects the connectivity of the generated KGs. The generated samples exhibit similar characteristics to some of the most challenging real-world KGs for EA tasks. Using our sampling, we demonstrate that state-of-the-art EA methods, like RREA, RDGCN, MultiKE and PARIS, exhibit different robustness to structurally diverse input KGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/fanourakis/Sampling_for_Entity_Alignment.git.

  2. 2.

    As opposed to strongly connected components, where edge directions matter.

  3. 3.

    According to the sampling taxonomy proposed in [34].

  4. 4.

    https://github.com/MaoXinn/RREA.

  5. 5.

    https://github.com/nju-websoft/OpenEA.

  6. 6.

    https://github.com/epfl-dlab/entity-matchers.

  7. 7.

    https://www.csd.uoc.gr/~vefthym/minoanER/datasets.html.

  8. 8.

     [18, 44] investigate direct forms of bias on “flat”, tabular data.

References

  1. Airlines dataset. https://archive.org/download/kasabi. Accessed 02 Mar 2023

  2. Locah dataset. http://data.archiveshub.ac.uk/. Accessed 02 Mar 2023

  3. Mem-e dataset from oaei 2022. http://oaei.ontologymatching.org/2022/knowledgegraph/index.html. Accessed 02 Mar 2023

  4. Memory-alpha dataset. http://memory-alpha.wikia.com/. Accessed 02 Mar 2023

  5. Restaurants dataset from oaei 2010. http://oaei.ontologymatching.org/2010/im/. Accessed 02 Mar 2023

  6. Star trek expanded universe dataset. http://stexpanded.wikia.com/. Accessed 02 Mar 2023

  7. Biemer, P.P., et al.: Total Survey Error in Practice. Wiley, Hoboken (2017)

    Book  Google Scholar 

  8. Bose, A.J., Hamilton, W.L.: Compositional fairness constraints for graph embeddings. In: ICML, vol. 97, pp. 715–724 (2019)

    Google Scholar 

  9. Bourli, S., Pitoura, E.: Bias in knowledge graph embeddings. In: ASONAM, pp. 6–10 (2020)

    Google Scholar 

  10. Buyl, M., Bie, T.D.: DeBayes: a Bayesian method for debiasing network embeddings. CoRR abs/2002.11442 (2020)

    Google Scholar 

  11. Chaurasiya, D., et al.: Entity alignment for knowledge graphs: progress, challenges, and empirical studies. CoRR abs/2205.08777 (2022)

    Google Scholar 

  12. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. CoRR abs/2007.02133 (2020)

    Google Scholar 

  13. Chen, M., Tian, Y., Chang, K., Skiena, S., Zaniolo, C.: Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: IJCAI, pp. 3998–4004 (2018)

    Google Scholar 

  14. Cheng, W., Wang, C., Xiao, B., Qian, W., Zhou, A.: On statistical characteristics of real-life knowledge graphs. In: Zhan, J., Han, R., Zicari, R.V. (eds.) BPOE 2015. LNCS, vol. 9495, pp. 37–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29006-5_4

    Chapter  Google Scholar 

  15. Choudhary, M., Laclau, C., Largeron, C.: A survey on fairness for machine learning on graphs. CoRR abs/2205.05396 (2022)

    Google Scholar 

  16. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of Data. Morgan & Claypool Publishers (2015)

    Google Scholar 

  17. Dong, Y., Kang, J., Tong, H., Li, J.: Individual fairness for graph neural networks: a ranking based approach. In: KDD, pp. 300–310 (2021)

    Google Scholar 

  18. Dong, Y., Ma, J., Chen, C., Li, J.: Fairness in graph mining: a survey. CoRR abs/2204.09888 (2022)

    Google Scholar 

  19. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Innovations in Theoretical Computer Science, pp. 214–226 (2012)

    Google Scholar 

  20. Efthymiou, V., Stefanidis, K., Christophides, V.: Big data entity resolution: from highly to somehow similar entity descriptions in the web. In: IEEE BigData, pp. 401–410 (2015)

    Google Scholar 

  21. Efthymiou, V., Stefanidis, K., Pitoura, E., Christophides, V.: FairER: entity resolution with fairness constraints. In: CIKM, pp. 3004–3008 (2021)

    Google Scholar 

  22. Fanourakis, N., Efthymiou, V., Kotzinos, D., Christophides, V.: Knowledge graph embedding methods for entity alignment: an experimental review. CoRR abs/2203.09280 (2022)

    Google Scholar 

  23. Fisher, J.: Measuring social bias in knowledge graph embeddings. CoRR abs/1912.02761 (2019)

    Google Scholar 

  24. Fisher, J., Mittal, A., Palfrey, D., Christodoulopoulos, C.: Debiasing knowledge graph embeddings. In: EMNLP, pp. 7332–7345 (2020)

    Google Scholar 

  25. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 34(8), 3549–3568 (2022)

    Article  Google Scholar 

  26. Huang, X., Cheng, H., Li, R., Qin, L., Yu, J.X.: Top-K structural diversity search in large networks. VLDB J. 34, 319–343 (2015). https://doi.org/10.1007/s00778-015-0379-0

    Article  Google Scholar 

  27. Huang, X.L., Tiwari, M., Shah, S.: Structural diversity in social recommender systems. In: RecSys (2013)

    Google Scholar 

  28. Jeong, J., Yun, J., Keam, H., Park, Y., Park, Z., Cho, J.: div2vec: diversity-emphasized node embedding. In: RecSys (2020)

    Google Scholar 

  29. Kang, J., He, J., Maciejewski, R., Tong, H.: InFoRM: individual fairness on graph mining. In: KDD, pp. 379–389 (2020)

    Google Scholar 

  30. Kang, J., Zhu, Y., Xia, Y., Luo, J., Tong, H.: RawlsGCN: towards Rawlsian difference principle on graph convolutional network. CoRR abs/2202.13547 (2022)

    Google Scholar 

  31. Karakasidis, A., Pitoura, E.: Identifying bias in name matching tasks. In: EDBT, pp. 626–629 (2019)

    Google Scholar 

  32. Keidar, D., Zhong, M., Zhang, C., Shrestha, Y.R., Paudel, B.: Towards automatic bias detection in knowledge graphs. In: EMNLP, pp. 3804–3811 (2021)

    Google Scholar 

  33. Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K.P., Weller, A., Mirzasoleiman, B.: CrossWalk: fairness-enhanced node representation learning. In: AAAI, pp. 11963–11970 (2022)

    Google Scholar 

  34. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: SIGKDD, pp. 631–636 (2006)

    Google Scholar 

  35. Li, J., Song, D.: Uncertainty-aware pseudo label refinery for entity alignment. In: WWW, pp. 829–837 (2022)

    Google Scholar 

  36. Li, P., Wang, Y., Zhao, H., Hong, P., Liu, H.: On dyadic fairness: exploring and mitigating bias in graph connections. In: ICLR (2021)

    Google Scholar 

  37. Luo, Y., Yang, B., Xu, D., Tian, L.: A survey: complex knowledge base question answering. In: ICICSE, pp. 46–52 (2022)

    Google Scholar 

  38. Mao, X., Wang, W., Xu, H., Wu, Y., Lan, M.: Relational reflection entity alignment. In: CIKM, pp. 1095–1104 (2020)

    Google Scholar 

  39. Martínez-Plumed, F., Ferri, C., Nieves, D., Hernández-Orallo, J.: Missing the missing values: the ugly duckling of fairness in machine learning. Int. J. Intell. Syst. 36(7), 3217–3258 (2021)

    Article  Google Scholar 

  40. Masrour, F., Wilson, T., Yan, H., Tan, P., Esfahanian, A.: Bursting the filter bubble: fairness-aware network link prediction. In: AAAI, pp. 841–848 (2020)

    Google Scholar 

  41. Molokwu, B.C., Shuvo, S.B., Kar, N.C., Kobti, Z.: Node classification in complex social graphs via knowledge-graph embeddings and convolutional neural network. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 183–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_15

    Chapter  Google Scholar 

  42. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: ACL, pp. 4710–4723 (2019)

    Google Scholar 

  43. Obraczka, D., Schuchart, J., Rahm, E.: EAGER: embedding-assisted entity resolution for knowledge graphs. CoRR abs/2101.06126 (2021)

    Google Scholar 

  44. Quy, T.L., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets for fairness-aware machine learning. WIREs Data Min. Knowl. Discov. 12(3), e1452 (2022)

    Google Scholar 

  45. Rahman, T.A., Surma, B., Backes, M., Zhang, Y.: Fairwalk: towards fair graph embedding. In: IJCAI, pp. 3289–3295 (2019)

    Google Scholar 

  46. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15(2), 14:1–14:49 (2021)

    Google Scholar 

  47. Sanz-Cruzado, J., Pepa, S.M., Castells, P.: Structural novelty and diversity in link prediction. In: WWW, pp. 1347–1351 (2018)

    Google Scholar 

  48. Saxena, A., Fletcher, G., Pechenizkiy, M.: HM-EIICT: fairness-aware link prediction in complex networks using community information. J. Comb. Optim. 44(4), 2853–2870 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sinha, A., Cazabet, R., Vaudaine, R.: Systematic biases in link prediction: comparing heuristic and graph embedding based methods. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 81–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_7

    Chapter  Google Scholar 

  50. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of relations, instances, and schema. PVLDB 5(3), 157–168 (2011)

    Google Scholar 

  51. Sun, Z., et al.: A benchmarking study of embedding-based entity alignment for knowledge graphs. Proc. VLDB Endow. 13(11), 2326–2340 (2020)

    Article  Google Scholar 

  52. Tang, X., et al.: Investigating and mitigating degree-related biases in graph convolutional networks. In: CIKM, pp. 1435–1444 (2020)

    Google Scholar 

  53. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, pp. 297–304 (2019)

    Google Scholar 

  54. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.M.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. U.S.A. 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  55. Wang, S.: On the analysis of large integrated knowledge graphs for economics, banking and finance. In: EDBT/ICDT Workshops, vol. 3135 (2022)

    Google Scholar 

  56. Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity alignment for heterogeneous knowledge graphs. In: IJCAI, pp. 5278–5284 (2019)

    Google Scholar 

  57. Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: IJCAI 2019 (2019)

    Google Scholar 

  58. Zhang, R., Trisedya, B.D., Li, M., Jiang, Y., Qi, J.: A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning. VLDB J. 31(5), 1143–1168 (2022). https://doi.org/10.1007/s00778-022-00747-z

    Article  Google Scholar 

  59. Zhang, Y., Wang, L., Zhu, J.J.H., Wang, X., Pentland, A.S.: The strength of structural diversity in online social networks. CoRR abs/1906.00756 (2019)

    Google Scholar 

Download references

Acknowledgement

The work of N. Fanourakis and V. Efthymiou was funded from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under GA No 969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Fanourakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fanourakis, N., Efthymiou, V., Christophides, V., Kotzinos, D., Pitoura, E., Stefanidis, K. (2023). Structural Bias in Knowledge Graphs for the Entity Alignment Task. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics