Skip to main content

Rational OpenCog Controlled Agent

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13921))

Included in the following conference series:

  • 1149 Accesses

Abstract

In this paper we introduce, ROCCA for Rational OpenCog Controlled Agent, an agent, that, as its name suggests, leverages the OpenCog framework to fulfill goals in uncertain environments. It attempts to act rationally, relying on reasoning for both learning and planning. An experiment in a Minecraft environment is provided as a test case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ROCCA video demonstration (2022). https://youtu.be/rCvQHrJAD2c

  2. ROCCA source code repository (2023). https://github.com/opencog/rocca

  3. Bach, J.: MicroPsi 2: the next generation of the MicroPsi framework. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 11–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_2

    Chapter  Google Scholar 

  4. Brockman, G., et al.: OpenAI gym (2016)

    Google Scholar 

  5. Cai, Z., et al.: OpenPsi: a novel computational affective model and its application in video games. Eng. Appl. Artif. Intell. 26, 1–12 (2013). https://doi.org/10.1016/j.engappai.2012.07.013

    Article  Google Scholar 

  6. Geisweiller, N.: Partial operator induction with beta distributions. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds.) AGI 2018. LNCS (LNAI), vol. 10999, pp. 52–61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97676-1_6

    Chapter  Google Scholar 

  7. Geisweiller, N., Goertzel, B.: An inferential approach to mining surprising patterns in hypergraphs. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 59–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_6

    Chapter  Google Scholar 

  8. Geisweiller, N., Yusuf, H.: Probabilistic logic networks for temporal and procedural reasoning. In: Hammer, P., et al. (eds.) AGI 2023. LNAI, vol. 13921, pp. 85–94. Springer, Cham (2023)

    Google Scholar 

  9. Goertzel, B., Ikle, M., Goertzel, I.F., Heljakka, A.: Probabilistic Logic Networks. Springer, New York (2009). https://doi.org/10.1007/978-0-387-76872-4

    Book  MATH  Google Scholar 

  10. Goertzel, B., et al.: An integrative methodology for teaching embodied non-linguistic agents, applied to virtual animals in second life. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp. 161–175. IOS Press, NLD (2008)

    Google Scholar 

  11. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Atlantis Press (2014)

    Google Scholar 

  12. Goertzel, B., et al.: Cognitive synergy between procedural and declarative learning in the control of animated and robotic agents using the OpenCogPrime AGI architecture. In: Proceedings of the AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  13. Hahm, C., Xu, B., Wang, P.: Goal generation and management in NARS. In: Goertzel, B., Iklé, M., Potapov, A. (eds.) AGI 2021. LNCS (LNAI), vol. 13154, pp. 96–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93758-4_11

    Chapter  Google Scholar 

  14. Hammer, P., Lofthouse, T.: ‘OpenNARS for applications’: architecture and control. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_20

    Chapter  Google Scholar 

  15. Hart, D., Goertzel, B.: OpenCog: a software framework for integrative artificial general intelligence. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp. 468–472. IOS Press, NLD (2008)

    Google Scholar 

  16. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The Malmo platform for artificial intelligence experimentation. In: International Joint Conference on Artificial Intelligence (2016)

    Google Scholar 

  17. Leike, J., Lattimore, T., Orseau, L., Hutter, M.: Thompson sampling is asymptotically optimal in general environments. In: Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence. UAI 2016, Arlington, Virginia, USA, pp. 417–426. AUAI Press (2016)

    Google Scholar 

  18. Pitt, J., Ikle, M., Sellmann, G., Goertzel, B.: Economic attention networks: associative memory and resource allocation for general intelligence. In: Proceedings of the 2nd Conference on Artificial General Intelligence, pp. 88–93. Atlantis Press, June 2009. https://doi.org/10.2991/agi.2009.19

  19. Schmidhuber, J.: Goedel machines: self-referential universal problem solvers making provably optimal self-improvements. ArXiv cs.LO/0309048 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nil Geisweiller or Hedra Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geisweiller, N., Yusuf, H. (2023). Rational OpenCog Controlled Agent. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33469-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33468-9

  • Online ISBN: 978-3-031-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics