Abstract
Multiple cognitive algorithms posited to play a key role in AGI (forward and backward chaining inference, clustering and concept formation, evolutionary and reinforcement learning, probabilistic programming, etc.) are given a common formulation as recursive discrete decision processes involving optimizing functions defined over metagraphs, in which the key decisions involve sampling from probability distributions over metagraphs and enacting sets of combinatory operations on selected sub-metagraphs. This forms a bridge between abstract conceptions of general intelligence founded on notions of algorithmic information and complex systems theory, and the practical design of multi-paradigm AGI systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Franz, A., Gogulya, V., Löffler, M.: WILLIAM: a monolithic approach to AGI. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 44–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_5
Gibbons, J.: An initial-algebra approach to directed acyclic graphs. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 282–303. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-60117-1_16
Goertzel, B.: Folding and unfolding on metagraphs (2020). https://arxiv.org/abs/2012.01759
Goertzel, B.: Grounding Occam’s razor in a formal theory of simplicity. arXiv preprint arXiv:2004.05269 (2020)
Goertzel, B.: Paraconsistent foundations for probabilistic reasoning, programming and concept formation. arXiv preprint arXiv:2012.14474 (2020)
Goertzel, B.: Patterns of cognition: cognitive algorithms as Galois connections fulfilled by chronomorphisms on probabilistically typed metagraphs. arXiv preprint arXiv:2102.10581 (2021)
Goertzel, B.: Toward a general theory of general intelligence: a patternist perspective. arXiv preprint arXiv:2103.15100 (2021)
Goertzel, B., Pennachin, C.: How might probabilistic reasoning emerge from the brain? In: Proceedings of the First AGI Conference, vol. 171, p. 149. IOS Press (2008)
Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Atlantis Thinking Machines, Springer, Heidelberg (2013). https://doi.org/10.2991/978-94-6239-027-0
Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, Heidelberg (2005). https://doi.org/10.1007/b138233
van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic programming. arXiv preprint arXiv:1809.10756 (2018)
Mu, S.C., Oliveira, J.N.: Programming from Galois connections. J. Log. Algebraic Program. 81(6), 680–704 (2012)
Schmidhuber, J.: Godel machines: fully self-referential optimal universal self-improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence. COGTECH, pp. 119–226. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-68677-4_7
Schmidhuber, J.: Optimal ordered problem solver. Mach. Learn. 54(3), 211–254 (2004). https://doi.org/10.1023/B:MACH.0000015880.99707.b2
Torczon, V.: Pattern search methods for nonlinear optimization. In: SIAG/OPT Views and News. Citeseer (1995)
Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation. J. Artif. Intell. Res. 40, 95–142 (2011)
Weinbaum, D., Veitas, V.: Open ended intelligence: the individuation of intelligent agents. J. Exp. Theor. Artif. Intell. 29(2), 371–396 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Goertzel, B. (2023). Bridging AGI Theory and Practice with Galois Connections. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-33469-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33468-9
Online ISBN: 978-3-031-33469-6
eBook Packages: Computer ScienceComputer Science (R0)