Skip to main content

Elements of Cognition for General Intelligence

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2023)

Abstract

What can artificial intelligence learn from the cognitive sciences? We review some fundamental aspects of how human cognition works and relate it to different brain structures and their function. A central theme is that cognition is very different from how it is envisioned in classical artificial intelligence which offers a novel path toward intelligent systems that in many ways is both simpler and more attainable. We also argue that artificial intelligent systems takes more than a single silver bullet. It requires a large number of interacting subsystem that are coupled to both the body and to the environment. We argue for an approach to artificial general intelligence based on a faithful reproduction of known brain processes in a system-level model that incorporates a large number of components modelled after the human brain.

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program - Humanities and Society (WASP-HS) funded by the Marianne and Marcus Wallenberg Foundation and the Marcus and Amalia Wallenberg Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, R.A., Essick, G.K., Siegel, R.M.: Encoding of spatial location by posterior parietal neurons. Science 230(4724), 456–458 (1985)

    Article  Google Scholar 

  2. Baddeley, A.: Working memory. Curr. Biol. 20(4), R136–R140 (2010)

    Article  Google Scholar 

  3. Balkenius, C.: Natural intelligence in artificial creatures. Lund University Cognitive Studies (1995)

    Google Scholar 

  4. Balkenius, C., Johansson, B., Tjøstheim, T.A.: Ikaros: a framework for controlling robots with system-level brain models. Int. J. Adv. Robot. Syst. 17, 1–12 (2020)

    Article  Google Scholar 

  5. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  6. Cisek, P.: Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. Roy. Soc. B Biol. Sci. 362(1485), 1585–1599 (2007)

    Article  Google Scholar 

  7. Clark, A.: Mindware: An Introduction to the Philosophy of Cognitive Science. Oxford University Press, Oxford (2000)

    Google Scholar 

  8. Epstein, R.A., Patai, E.Z., Julian, J.B., Spiers, H.J.: The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017)

    Article  Google Scholar 

  9. Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11(7–8), 1277–1303 (1998)

    Article  Google Scholar 

  10. Fuster, J.: The Prefrontal Cortex. Academic Press (2015)

    Google Scholar 

  11. Gardenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2004)

    Google Scholar 

  12. Gibson, J.J.: The theory of affordances, Hilldale, USA, vol. 1, no. 2, pp. 67–82 (1977)

    Google Scholar 

  13. Graybiel, A.M.: The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15(6), 638–644 (2005)

    Article  Google Scholar 

  14. Johansson, B., Tjøstheim, T.A., Balkenius, C.: Epi: an open humanoid platform for developmental robotics. Int. J. Adv. Rob. Syst. 17(2), 1729881420911498 (2020)

    Google Scholar 

  15. Johansson, R., Holsanova, J., Holmqvist, K.: Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cogn. Sci. 30(6), 1053–1079 (2006)

    Article  Google Scholar 

  16. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S., Hudspeth, A.J., Mack, S., et al.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  17. Munakata, Y., Herd, S.A., Chatham, C.H., Depue, B.E., Banich, M.T., O’Reilly, R.C.: A unified framework for inhibitory control. Trends Cogn. Sci. 15(10), 453–459 (2011)

    Article  Google Scholar 

  18. Ohyama, T., Nores, W.L., Murphy, M., Mauk, M.D.: What the cerebellum computes. Trends Neurosci. 26(4), 222–227 (2003)

    Article  Google Scholar 

  19. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)

    Google Scholar 

  20. Redgrave, P., Prescott, T.J., Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4), 1009–1023 (1999)

    Article  Google Scholar 

  21. Schmahmann, J.D.: The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019)

    Article  Google Scholar 

  22. Smith, R., Thayer, J.F., Khalsa, S.S., Lane, R.D.: The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75, 274–296 (2017)

    Article  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  24. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (2019)

    Book  Google Scholar 

  25. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2(9), 338–347 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Balkenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balkenius, C., Johansson, B., Tjøstheim, T.A. (2023). Elements of Cognition for General Intelligence. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33469-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33468-9

  • Online ISBN: 978-3-031-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics