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Abstract. It is now more than a half-century since the Physical Symbol Systems 

Hypothesis (PSSH) was first articulated as an empirical hypothesis.  More recent 

evidence from work with neural networks and cognitive architectures has 

weakened it, but it has not yet been replaced in any satisfactory manner.  Based 

on a rethinking of the nature of computational symbols – as atoms or 

placeholders – and thus also of the systems in which they participate, a hybrid 

approach is introduced that responds to these challenges while also helping to 

bridge the gap between symbolic and neural approaches, resulting in two new 

hypotheses, one that is to replace the PSSH and other focused more directly on 

cognitive architectures. 
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1 Introduction 

Our current understanding of the role of physical symbol systems in artificial 

intelligence (AI) is grounded in the pioneering work of Newell and Simon [1-3], 

although as they point out the roots go back much further in philosophy – most notably 

in logic – computer science, linguistics, literature, and the arts.  Such systems, and their 

culmination in the Physical Symbol Systems Hypothesis (PSSH) are reviewed in Section 

2. 

Many critiques of the PSSH have been proposed since it was first introduced, with 

some that have easily been refuted and others that have lingered (Section 3).  Here, two 

are taken up that have remained compelling, before hybrid symbol systems of a 

particular sort are explored as a response to them (Section 4).  As part of this, the notion 

of symbol systems is rethought, starting with a variant definition of what it means to be 

a computational symbol that is grounded in the Common Model of Cognition (CMC) 

[4] and the Sigma cognitive architecture [5].  Two new hybrid hypotheses result, one 

that offers an alternative to the PSSH and the other that focuses more specifically on 

cognitive architectures. 

Demonstrating that neural networks are themselves hybrid symbol systems of this 

sort (Section 5), rather than being limited to the numeric component of a coarse-grained 

combination of symbolic and numeric processing, helps to bridge the gap between 

symbolic and neural approaches while enabling recent successes with neural networks 
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to be weighed in a positive manner in evaluating hypotheses concerning symbol 

systems, rather than the former necessarily serving as a challenge to the latter. 

The overall result, as discussed further in Section 6, is a novel way of thinking about 

symbol systems and the fundamental hypotheses concerning them; the introduction of 

a particular form of hybrid symbol system and the appropriate hypotheses concerning 

it; and an understanding of how neural networks are examples, rather than 

counterexamples, of this form of symbol system.  The hope is that this all helps cut the 

Gordian Knot that has resulted from past discussions on these topics.  

Proposing hybrid or neuro-symbolic systems is certainly nothing new.  Many 

approaches have already been investigated – see, e.g., [6] and [7] for overviews, and 

[8] for an earlier discussion of the PSSH and the relevance of hybrid systems.  But the 

point here is to introduce a particular take on hybrid symbol systems that is in service 

of an appropriate rethinking of the Physical Symbol Systems Hypothesis.  The approach 

is broader than neuro-symbolic, as it also includes hybrid systems that span other 

numeric paradigms, such as probabilities.  In addition, it spans both tightly coupled and 

loosely coupled approaches to combining symbolic and numeric processing. 

2 Physical Symbol Systems 

According to the traditional view, symbols are distinct patterns in the physical world 

that can be composed into expressions, or symbol structures.  Processes are then 

defined on these symbol structures that can create, modify, reproduce, and destroy 

them.  An expression designates an entity, whether internal or external, if the 

expression’s use depends on the nature of the entity.  An expression is interpreted if it 

designates an internal procedure that is then executed.  The physicality of such symbol 

systems reflects that they are natural, in obeying the laws of physics and being 

amenable to engineering; and that they aren’t limited to what is in human minds, or 

even necessarily based on the same kinds of symbols that have traditionally been 

imputed to humans. 

Given composition, designation, and interpretation, along with the appropriate 

processes, physical symbol systems provide a form of universal computation.  There 

are certainly more details in the various papers, but this provides the essence of what 

can now be considered the classical notion of a physical symbol system. 

The Physical Symbol Systems Hypothesis (PSSH) then states that: 

A physical symbol system has the necessary and sufficient means for 

general intelligent action. 

This hypothesis was introduced as an empirical generalization rather than a theorem.  

Evidence for sufficiency stemmed from the universality of symbol systems and the 

success of such systems built as of then.  Evidence for necessity stemmed from noting 

that the one natural system exhibiting such intelligent behavior – that is, humans – 

appeared to be such a system, and from the lack of alternative approaches that were 

nearly as successful.  Newell, for example mentions that “These advances far outstrip 

what has been accomplished by other attempts to build intelligent mechanisms, such as 

the work in building robots driven directly by circuits; the work in neural nets, or the 
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engineering attempts at pattern recognition using direct circuitry and analogue 

computation.” [3]. 

He went on to state that “In my own view this hypothesis sets the terms on which 

we search for a scientific theory of mind.” and “The physical symbol system is to our 

enterprise what the theory of evolution is to all biology, the cell doctrine to cellular 

biology, the notion of germs to the scientific concept of disease, the notion of tectonic 

plates to structural geology.” 

3 Critiquing the Physical Symbol Systems Hypothesis 

It has now been over fifty years since the PSSH was first articulated, with numerous 

critiques and defenses occurring in the intervening years.  Nilsson [8], e.g., lists four 

general types of critiques with his responses to them (in italics here), which in brief are: 

1. Lack of embodiment/grounding. 

This is a misunderstanding as the PSSH already includes this. 

2. Non-symbolic/analog processing. 

Include numbers; that is, make the systems hybrid. 

3. Brain-style versus computation-style (i.e., brains are not computers). 

The brain is computational. 

4. The mindlessness of much of what appears to be intelligent behavior. 

Mindless constructs only yield mindless behavior. 

In this section two particular critiques are considered, based on new empirical 

evidence in the form of the recent successes of deep learning [9], and to a lesser extent 

probabilistic graphical models (PGMs) [10], plus work on the CMC.  One critique, 

aligned with Nilsson’s second, challenges its sufficiency and the other its necessity. 

The sufficiency challenge focuses on the lack of numeric processing – i.e., 

calculations on quantities – in the PSSH.  Nilsson’s response is to shift to hybrid 

systems that include both symbols and numbers.  In a sense, this isn’t logically 

necessary, as the universality of symbol systems implies that, as with any modern 

digital computer, they can implement algorithms for numeric processing.  However, 

universality is weaker than what was originally proposed, as it omits grounding 

sufficiency in the successes of existing symbolic AI systems.  Given the range of 

general intelligent action that has been shown to proceed more effectively with numeric 

processing, whether in the form of probabilities or activations, the success of purely 

symbolic systems no longer provides compelling empirical evidence itself for the 

sufficiency of symbols on their own. 

Thus, we are left with a weakened form of sufficiency for the PSSH, based solely on 

universality.  Hybrid systems have the potential to restore the stronger sense of 

sufficiency (Section 4).  They also support a more stringent sufficiency hypothesis that 

arises when the concern is more particularly with cognitive architectures [11]; that is, 

models of the fixed structures and processes that yield a mind [12]. 

The necessity challenge is rooted directly in how neural networks now provide a 

better approach for many problems related to intelligent action.  Successes with PGMs 
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can be considered here as well, although they are already hybrid systems that add 

probabilities to classical symbol systems, particularly in their most general form as 

statistical relational systems [13], so they do not directly challenge the necessity of 

physical symbol systems.  In contrast, deep learning has the potential to provide an 

alternative that completely overturns the necessity argument.  In Section 5, this 

challenge is approached via a demonstration that, given the rethinking of symbol 

systems in Section 4, neural networks are themselves instances of hybrid symbol 

systems.  This approach avoids the need to resolve the contentious question of whether 

or not neural networks have or need traditional symbols, a question that appears 

unresolvable, at least to me, without additional evidence. 

4 Rethinking Symbol Systems 

This section leverages the four-step methodology of essential analysis [14] to yield a 

fresh understanding of symbols and symbol systems: (1) strip out many of the 

elaborations that are normally part of a topic’s definition, and which are often a source 

of dissonance among researchers and communities, to yield its essence; (2) use what 

has been stripped out, and possibly more, in specifying a definitional space of variations 

on the topic; (3) populate this space with exemplars that flesh it out; and (4) derive 

novel implications from the results of the first three steps.  Step three is downplayed 

here due to lack of space, while step four introduces two new hybrid symbol systems 

hypotheses. 

The focus here is in particular on the notion of symbol as it is used computationally 

rather than as it is used in the humanities and arts.  For example, [15] defines a symbol 

as “something used for or regarded as representing something else; a material object 

representing something, often something immaterial; emblem, token, or sign.”  This 

focuses on an abstract notion of designation or aboutness, which has elsewhere been 

considered an important part of the essence of a theory [14].  Computationally, the 

essence of a symbol is proposed to be an atom that is: (1) indecomposable into other 

atoms; and (2) distinct from other atoms.  McDermott informally introduced the notion 

of a symbol as a placeholder [16].  Although yielding different connotations, this notion 

is compatible with that of an atom here. 

This essence retains the classical notion of a computational symbol being a primitive 

element that can be distinguished from other such elements but eschews the need for 

both physicality and symbols being structured as patterns.  There were good reasons at 

the time to emphasize physicality – to counter both Cartesian dualism and the notion 

that only humans could use symbols – but these battles have already been won, at least 

in my judgement, so this explicit emphasis on physicality is now dispensable. 

Pattern comparison is one way to determine whether two atoms are distinct. Yet, 

such a notion need not be definitional if it is just used to compare symbols.  If symbols 

are considered as types (rather than tokens) – a notion implicit in the traditional 

definition – patterns are simply intensional definitions of symbols.  An extensional 

alternative defines each symbol in terms of a set of tokens, with each token in a set 
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considered to be indistinct from other tokens in the same set and distinct from tokens 

in other sets. 

The classical notion of symbol also includes composability – into symbol structures 

or expressions – designation, and interpretation.  The first of these is effectively 

assumed to be part of the very nature of symbols, whereas the latter two are additional 

properties necessary to enable the classical form of physical symbol systems.  The 

essential definition of a symbol introduced here includes none of these three notions; 

that is, all are optional.  Therefore, any system that includes even these minimal, atomic 

forms of symbols can be considered a symbol system of some sort. 

Fig. 1 structures these optional properties, plus 

a bit more, into a small tree.  According to this 

perspective, a symbol may be composable into 

expressions (aka symbol structures).  It may also 

designate; that is, stand in for something else.  A 

designation is procedural if it is about a process.  

This is the classical notion of interpretation, when 

combined with the ability to execute the 

designated process.  A procedural symbol, 

according to this definition, designates a process 

rather than being part of the process itself.  If the 

process is itself a symbol structure it will contain 

symbols, but they themselves may be of any type.  

A designation is declarative if it is about an object – essentially anything other than a 

process – which may be internal to the system or external to it, with the latter relating 

to grounding.  This corresponds to the classical notion of designation when contrasted 

with interpretation. Beyond this difference in what is designated, there is no intent to 

impute any other aspects of the classical procedural versus declarative distinction here. 

Symbols in a classical symbol system support all of these properties, enabling them 

to exhibit computational universality.  Whether systems in which some or all of the 

symbols lack some of these properties provide anything like universal computation 

would necessarily depend on the details of the individual systems. 

The CMC, an attempt at developing a consensus on what is needed for human-like 

cognition – i.e., human cognition and similar forms of artificial cognition – took a step 

towards such an essence by dropping the necessity of designation, and thus also of 

interpretation, stripping symbols down to primitive elements that only support 

composability into symbol structures.  Although designation somewhere in a system 

seems necessary for it to be either meaningful or operational, it is not necessary for all 

symbols. 

Fig. 1. Optional properties of symbols. 
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The CMC also associated quantitative 

metadata with such symbols and structures  – 

which provide the data – to modulate how they 

are processed.  Such combinations can be 

considered as hybrid symbols or structures.1  

Considering hybrid of this sort as a third optional 

property of symbols leads to Fig. 2. 

The CMC went on to argue for a different 

form of weakening of the sufficiency aspect of 

the PSSH.  While still agreeing that classical 

symbol systems, as universal computational 

systems, are sufficient in principle for intelligent 

behavior, it denied that they are sufficient when 

time scales are relevant, such as in cognitive architectures.  In particular, if statistical 

processing must occur on the same time scale as symbolic processing in such an 

architecture, then implementing the former in terms of the latter – as the universality 

argument for sufficiency implies – is insufficient.  Thus, the CMC implies the need for 

numeric and symbolic processing on the same time scale.  The Sigma cognitive 

architecture [5] goes a step further by denying the need for all symbols to support 

arbitrary forms of composition, thus implicitly yielding the essence made explicit here. 

Now, given this explicit articulation of the essence of a symbol plus its tree of 

variations, the Hybrid Symbol Systems Hypothesis (HSSH) can be stated as: 

Hybrid symbol systems are necessary and sufficient for general 

intelligent action. 

If the sufficiency clause of the PSSH is valid then so must be the comparable clause in 

the HSSH, at least for hybrid symbol systems that are universal.  However, the HSSH 

responds to the PSSH sufficiency challenge by including numbers, as suggested in [8].  

Necessity of the HSSH is not implied by the corresponding clause in the PSSH.  Instead, 

the HSSH responds to the PSSH necessity challenge by coopting the successes of neural 

networks (Section 5). 

The Hybrid Cognitive Architectures Hypothesis (HCAH) then states: 

Hybrid symbol systems are necessary and sufficient for cognitive 

architectures. 

This hypothesis is clearly related to the HSSH, but it matters in itself because the 

comparable hypothesis – perhaps called the Physical Cognitive Architectures 

Hypothesis (PCAH) – fails.  Thus, the sufficiency side of the PCAH is invalid 

irrespective of what might be true with respect to necessity.  As with the HSSH, 

sufficiency for the HCAH need not hold for all hybrid symbol systems, but it must hold 

for at least some. 

 As with the PSSH and the HSSH, the HCAH is an empirical generalization.  Both 

sides of the argument are now supported by the architectural successes of classical 

 
1 The CMC also allows numeric data, consideration of which is beyond the scope of this paper. 

Fig. 2. Optional properties of symbols 

from Fig. 1, extended with hybrid. 
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symbol systems, neural systems, and traditional hybrid systems such as PGMs.  Both 

sides are further bolstered by how the CMC itself is a hybrid symbol system. 

5 Neural Networks as Hybrid Symbol Systems 

What makes neural networks hybrid symbol systems, as defined 

here, rather than simply the numeric component of a larger 

system that also includes a symbolic component, such as [17]?  

To keep things simple, the focus here is limited to standard 

feedforward neural networks, consisting of multiple layers of 

nodes and links, where nodes have activations, links connect 

pairs of nodes across levels and have weights, and processing 

occurs by multiplying input activations along links by the links’ 

weights and then nonlinearly transforming the sums of these 

weighted inputs. 

To be a bit more specific, let’s assume a small network for 

paired associates that maps an input word to an output word.  

Fig. 3 exemplifies this via a completely connected network with 6-unit input and output 

layers – yielding a 6-dimensional vector of activations for each – and 2 intermediate 

layers, each with 3 units.  Words map consistently to input and output vectors via 

encoding and decoding processes that are external to the network.  These processes may 

be based on an arbitrary or random assignment of vectors to words or some form of 

more sophisticated embedding process, such as in [18].  

The focus here, however, is on analyzing the forward processing in the network itself 

to show how it amounts to a hybrid symbol system.  It should be possible to extend 

such an analysis to encoding and decoding processes, as well as to learning in neural 

networks, but this simple example is sufficient to establish the precedent. 

First consider the nodes 

in the input layer of the 

network, now shown at the 

top of Fig. 4 as locations 

within a vector of nominal 

activations.  Such nodes 

can be seen as hybrid 

symbols – symbolic nodes 

(i.e., locations) with 

activations as their 

quantitative metadata – 

that exhibit a limited form 

of composability in yielding the hybrid symbol structure that is the input vector.  In 

contrast to the traditional interpretation of distributed representations – where nodes are 

subsymbolic, or microfeatures, with symbols only arising as patterns over these 

elements – here the individual nodes are themselves hybrid symbols that do not 

themselves designate, with patterns arising as structures of these hybrid symbols. 

Fig. 4. Designation relationships among input vector, word 

vector, letters, and word meaning.  Dotted lines reflect internal 

designation and dashed lines external designation. 

Fig. 3. Simple network 

for paired associates. 
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This hybrid symbol structure does then internally designate a word structure that has 

one location per letter (middle of Fig. 4).  The metadata in the word structure is not 

shown as it is irrelevant to this analysis.  What does matter is that declarative symbols 

in this word structure externally designate particular letters of the alphabet, in this case 

making up Allen Newell’s first name (bottom of Fig. 4).  The word as whole then 

externally designates its meaning, iconified to the right of Fig. 4 via an image of him. 

Key to this all working is that it isn’t just the data aspect of hybrid symbols and 

structures that can designate, but the entirety of the hybrid symbols and structures – 

including their metadata – that can do so, just as is traditionally assumed for vectors in  

distributed representations [19].  The word itself is epiphenomenal to the feedforward 

network processing here – only the hybrid symbol structure at the top of Fig. 4, as 

yielded by encoding, actually participates.  As put in [20], “the node labels in a 

Connectionist machine are not part of the causal structure of the machine.” 

The internal nodes in the network are also hybrid symbols but without declarative 

designations, fitting the intuition that there are no fixed meanings inside the network.  

Instead, internal nodes – and links – procedurally designate fixed processes.  Consider 

link 𝜆 in Fig. 3, which points from node 𝜈1 to node 𝜈2.  This link is a hybrid symbol 

structure composed from these two hybrid symbols, with a weight as its metadata.  It 

procedurally designates a process that multiplies the activation arriving from 𝜈1 by this 

weight.  Internal nodes such as 𝜈2 then procedurally designate processes that sum all of 

their inputs – in this case, from 𝜈1 and any other nodes linked to it from the proceeding 

layer – and then nonlinearly transform the results. 

The last part of the analysis concerns the output nodes.  Perhaps surprisingly, they 

too do not declaratively designate anything here.  Instead, they procedurally designate 

the same summation and transformation process as the internal nodes.  It is not until 

postprocessing – that is during decoding – that this reverse mapping occurs. 

This analysis demonstrates that a feedforward neural network is a hybrid symbol 

system, as defined here.  As such, it makes the case that the shift from the PSSH to the 

HSSH enables coopting neural-network successes as evidence for both the sufficiency 

and necessity of hybrid symbol systems rather than as counterexamples to them. 

But what type of hybrid symbol system does this type of neural network yield?  It 

provides limited forms of declarative designation (at input nodes), procedural 

designation (at all but input nodes), and composition (via vectors within a level and 

links across levels).  Yet, other forms of neural networks do go beyond this.  To name 

just two common examples, both convolutional networks (e.g., [21]) and transformers 

[22] include additional forms of composition.  The flexibility of composition seen in 

the output of transformer-based generative networks [23] is in fact quite compelling.  

Some forms of neural networks are also known to support universal computation (see, 

e.g., [24]).  Yet no neural network to date has solved combinatorial board games 

without the dynamic composition yielded by explicit state-space search (as seen, e.g., 

in both [25] and [26]).  So, the overall story is complex, dependent on the exact nature 

of the neural networks considered, and still not completely understood. 
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6 Conclusion 

Leveraging essential analysis, symbols are (re)defined as atoms or placeholders, and a 

space of variations is defined for symbols, symbol structures, and symbol systems.  This 

includes the classical traits of compositionality and designation, plus hybridness and 

additional sub-traits under designation (such as interpretation).  In response to lingering 

challenges to the Physical Symbol System Hypothesis (PSSH), two new hypotheses 

have then been introduced that focus on the resulting hybrid symbol systems: 

Hybrid Symbol Systems Hypothesis (HSSH): 

Hybrid symbol systems are necessary and sufficient for general 

intelligent action. 

Hybrid Cognitive Architectures Hypothesis (HCAH): 

Hybrid symbol systems are necessary and sufficient for cognitive 

architectures. 

The HSSH is intended as a replacement for the PSSH, based on evidence 

accumulated since the latter was introduced as an empirical hypothesis a half-century 

ago.  Given this recent body of evidence, there is a sense in which the PSSH still holds, 

but it is a weaker sense.  The HSSH recaptures the originally intended strength while 

adding further to it by reinterpreting neural networks as compatriots – that is, as hybrid 

symbol systems themselves – rather than as competitors.  The result also helps chip 

away in a rather fine-grained manner at the overall divide between symbolic and neural 

systems. 

The HCAH is a more stringent claim than either the original PSSH or the HSSH in 

that it concerns cognitive architectures rather than general intelligent action.  Evidence 

accumulated over the past decades has shown that traditional physical symbol systems 

fail with respect to sufficiency for cognitive architectures due to the need for numeric 

processing within the architectures themselves.  The necessity of classical physical 

symbol systems for cognitive architectures remains an open question, as it is not yet 

clear whether neural networks – which although as argued here are hybrid symbol 

systems but which may not be classical symbol systems or even universal 

computationally – will prove to be a sufficient alternative on their own for such 

architectures. 

One potential chink in the armor of both of these new hypotheses is the possibility 

of quantum aspects to intelligence that cannot be captured even by hybrid systems [27].  

Should it prove necessary, some thought is already being put into what it would mean 

to have quantum symbol systems (e.g., [28]). 
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