Abstract
Human face is used to express affects and feelings, either involuntary or deliberately. How many dimensions of emotional flavors can be robustly distinguished in facial expressions, across individuals and cultures? Here we offer an answer and develop a practical approach to generate synthetic emotional facial expressions. Results can be used in studies of synthetic emotions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)
Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Per. 11, 273–294 (1977)
Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21, 529–553 (1982)
Lövheim, H.: A new three-dimensional model for emotions and monoamine neurotransmitters. Med. Hypotheses 78(2), 341–348 (2012)
Russell, J.: Core affect and the psychological construction of emotion. Psychol. Rev. 110(1), 145–172 (2003)
Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal theories of emotion: state of the art and future development. Emot. Rev. 5(2), 119–124 (2013)
8. Lieto, A., Pozzato, G.L., Striani, M., Zoia, S., Damiano, R.: DEGARI 2.0: a diversity-seeking, explainable, and affective art recommender for social inclusion. Cogn. Syst. Res. 77, 1–17 (2023). https://doi.org/10.1016/j.cogsys.2022.10.001
Gadzhiev, I.M., Knyshenko, M.P., Dolenko, S.A., Samsonovich, A.V.: Inherent dimension of the affective space: Analysis using electromyography and machine learning. Cogn. Syst. Res. 78, 96–105 (2023)
Li, R., et al.: Learning formation of physically-based face attributes. ArXiv, 2004.03458 (2020). https://doi.org/10.48550/ARXIV.2004.03458
Serengil, S.I., Ozpinar, A.: HyperExtended LightFace: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, pp. 1–4 (2021). https://doi.org/10.1109/ICEET53442.2021.9659697
Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R., Banziger, T., Roesch, E. (Eds.), A Blueprint for Affective Computing: A Sourcebook and Manual. Oxford University Press, Oxford (2010)
Acknowledgments
The authors are grateful to Aleksey Kevroletin, Mark Karavashkin, Georgy Vayntrub, Vera Mironova, Zhanna Demidova, Ismail M. Gadzhiev, Mikhail Knyshenko, and Sergei Dolenko for their contribution to this project. This work was supported by the Russian Science Foundation Grant #22–11-00213, https://rscf.ru/en/project/22-11-00213/.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Samsonovich, A.V., Sidorov, A., Inozemtsev, A. (2023). On Relation Between Facial Expressions and Emotions. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-33469-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33468-9
Online ISBN: 978-3-031-33469-6
eBook Packages: Computer ScienceComputer Science (R0)