Skip to main content

Alien Versus Natural-Like Artificial General Intelligences

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2023)

Abstract

A natural-like artificial general intelligence (AGI) is defined to be an AGI that includes mammalian-like mechanisms such as core usage of navigation maps, spatial and temporal binding, predictive coding, lifelong learning, and innate knowledge procedures. If it includes core mechanisms which allow full causal and analogical processing, then it is also considered to be a human-like AGI. An AGI which is not a natural-like AGI is termed an alien AGI. We consider (for sake of example) as a natural-like AGI a largely conceptual cognitive architecture (the Causal Cognitive Architecture 5) inspired by the mammalian brain. We consider (for sake of example) as an alien AGI the large language model ChatGPT. We show for a non-numeric simple example, that the natural-like AGI is able to solve the problem by automatic core mechanisms, but an alien AGI has difficulty arriving at a solution. It may be, that alien AGIs’ understanding of the world is so different from a human understanding that to allow alien AGIs to do tasks done originally by humans, is to eventually invite strange failures in the tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russel, S.J., Norvig, P.: “What is AI?” in Artificial Intelligence: A Modern Approach, 4th edn, pp. 1–5. Pearson, New Jersey (2021)

    Google Scholar 

  2. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. arXiv:0712.3329 (2007)

  3. Chollet, F.: On the measure of intelligence. arXiv:1911.01547 (2019)

  4. Wang, P.: On defining artificial intelligence. J. Artif. Gen. Intell. 10(2), 1–37 (2019). https://doi.org/10.2478/jagi-2019-0002

    Article  Google Scholar 

  5. Rosenbloom, P., Joshi, H., Ustun, V.: (Sub)Symbolic x (A)Symmetric x (Non)Combinatory. In: Cox, M.T. (ed.) Proceedings of the 7th Annual Conference on Advances in Cognitive Systems (2019)

    Google Scholar 

  6. Bołtuć, P., Boltuc, M.: BICA for AGI. Cogn. Syst. Res. 62, 57–67 (2020)

    Article  Google Scholar 

  7. Gubrud, M.A.: Nanotechnology and international security. In: Fifth Foresight Conference on Molecular Technology (1997)

    Google Scholar 

  8. Goertzel, B.: Who coined the term “AGI”? https://goertzel.org/who-coined-the-term-agi/. Accessed 26 Jan 2023

  9. Goertzel, B., Pennachin, C. (eds.): Artificial General Intelligence. Springer, New York (2007)

    MATH  Google Scholar 

  10. Adams, S., et al.: Mapping the landscape of human-level artificial general intelligence. AI Mag. 33, 25–42 (2012). https://doi.org/10.1609/aimag.v33i1.2322

    Article  Google Scholar 

  11. Kung, T.H., et al.: Performance of ChatGPT on USMLE. medRxiv (2022). https://doi.org/10.1101/2022.12.19.22283643

  12. Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M.B., Moser, E.I.: Integration of grid maps in merged environments. Nat. Neurosci. 21(1), 92–101 (2018)

    Article  Google Scholar 

  13. Alme, C.B., Miao, C., Jezek, K., et al.: Place cells in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 111(52), 18428–18435 (2014)

    Google Scholar 

  14. Schafer, M., Schiller, D.: Navigating social space. Neuron 100(2), 476–489 (2018)

    Article  Google Scholar 

  15. Schneider, H.: Navigation map-based artificial intelligence. AI 3(2), 434–464 (2022)

    Article  Google Scholar 

  16. Schneider, H.: An inductive analogical solution to the grounding problem. Cogn. Syst. Res. 77, 174–216 (2023). https://doi.org/10.1016/j.cogsys.2022.10.005

    Article  Google Scholar 

  17. Schneider, H.: Causal cognitive architecture 2: a solution to the binding problem. In: Klimov, V.V., Kelley, D.J. (eds.) BICA 2021. SCI, vol. 1032, pp. 472–485. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96993-6_52

    Chapter  Google Scholar 

  18. Schneider, H.: Causal cognitive architecture 3: a solution to the binding problem. Cogn. Syst. Res. 72, 88–115 (2022)

    Article  Google Scholar 

  19. Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex. Nat. Neurosci. 2(1), 79–87 (1999). https://doi.org/10.1038/4580

    Article  Google Scholar 

  20. Spelke, E.S.: Initial knowledge: six suggestions. Cognition 50, 431–445 (1994)

    Article  Google Scholar 

  21. Kinzler, K.D., Spelke, E.S.: Core systems in human cognition, chap 14. In: von Hofsten, C., Rosander, K. (eds.) Progress in Brain Research, vol. 164 (2007)

    Google Scholar 

  22. Martin-Ordas, G., Call, J., Colmenares, F.: Tubes, tables and traps: great apes solve two functionally equivalent trap tasks but show no evidence of transfer across tasks. Anim. Cogn. 11(3), 423–430 (2008). https://doi.org/10.1007/s10071-007-0132-1

    Article  Google Scholar 

  23. Penn, D.C., Holyoak, K.J., Povinelli, D.J.: Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci. 31(2), 109–130 (2008)

    Article  Google Scholar 

  24. Hofstadter, D.R.: Analogy as the core of cognition. In: Gentner, D., Holyoak, K.J., Kokinov, B.N. (eds.) The Analogical Mind, pp. 499–538. MIT Press (2001)

    Google Scholar 

  25. Rodríguez, F., Quintero, B., Amores, L., Madrid, D., Salas-Peña, C., Salas, C.: Spatial cognition in teleost fish: strategies and mechanisms. Animals 11(8), 2271 (2021)

    Article  Google Scholar 

  26. Taylor, A.H., Knaebe, B., Gray, R.D.: An end to insight? New Caledonian crows can spontaneously solve problems without planning their actions. Proc. Biol. Sci. 279(1749), 4977–4981 (2012). https://doi.org/10.1098/rspb.2012.1998

    Article  Google Scholar 

  27. Finn, J.K., Tregenza, T., Norman, M.D.: Defensive tool use in a coconut-carrying octopus. Curr Biol. 19(23), R1069–R1070 (2009). https://doi.org/10.1016/j.cub.2009.10.052. PMID: 20064403

    Article  Google Scholar 

  28. Kralik, J.D.: What can nonhuman animals, children, and g tell us about human-level general intelligence (AGI)? In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds.) AGI 2022, pp. 282–292. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-19907-3_26

    Chapter  Google Scholar 

  29. Schneider, H.: Analogical problem solving in the causal cognitive architecture. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds.) AGI 2022, pp. 100–112. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-19907-3_10

    Chapter  Google Scholar 

  30. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Gozalo-Brizuela, R., Garrido-Merchan, E.C.: ChatGPT is not all you need. A state of the art review of large generative AI models (2023). arXiv:2301.04655

  32. Bołtuć, P.: Strong semantic computing. Procedia Comput. Sci. 1(123), 98–103 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schneider, H., Bołtuć, P. (2023). Alien Versus Natural-Like Artificial General Intelligences. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33469-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33468-9

  • Online ISBN: 978-3-031-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics