Skip to main content

An Adaptive Vision Architecture for AGI Systems

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13921))

Included in the following conference series:

  • 787 Accesses

Abstract

This paper presents an unsupervised object detection system which can offline-learn generic visual features via Siamese neural network, yet is able to learn new object classes at run-time with a prototype learning approach applied on the latent representations. The operating requirements of this system feature bounded processing time per frame, while dealing with a fixed amount of available memory. This system works under the Assumption of Insufficient Knowledge and Resource and is hence operating in real-time and open to new information which can arrive at any time, as systems such as NARS and AERA ideally also demand for perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is also referred to lifelong or incremental learning in Machine Learning [14].

  2. 2.

    Will be extended to a more complicated kernel and in multiple directions.

  3. 3.

    source code and the neural network models, which are trained using the Backpropagation algorithm, can be found at https://github.com/PtrMan/23R.

  4. 4.

    https://github.com/nim-lang/Nim.

References

  1. Arel, I., Rose, D., Coop, R.: Destin: a scalable deep learning architecture with application to high-dimensional robust pattern recognition. In: 2009 AAAI Fall Symposium Series (2009)

    Google Scholar 

  2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, vol. 6 (1993)

    Google Scholar 

  3. Carpenter, G.A., Grossberg, S.: Art 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26(23), 4919–30 (1987)

    Article  Google Scholar 

  4. Fukushima, K.: Visual feature extraction by a multilayered network of analog threshold elements. IEEE Trans. Syst. Sci. Cybernet. 5(4), 322–333 (1969)

    Article  MATH  Google Scholar 

  5. Goertzel, B.: Perception processing for general intelligence: bridging the symbolic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 79–88. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_9

    Chapter  Google Scholar 

  6. Hammer, P., Lofthouse, T.: ‘OpenNARS for applications’: architecture and control. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_20

    Chapter  Google Scholar 

  7. Hammer, P., Lofthouse, T., Wang, P.: The OpenNARS implementation of the non-axiomatic reasoning system. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) AGI -2016. LNCS (LNAI), vol. 9782, pp. 160–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41649-6_16

    Chapter  Google Scholar 

  8. Koch, G.R.: Siamese neural networks for one-shot image recognition (2015)

    Google Scholar 

  9. Lofthouse, T.: ALANN: an event driven control mechanism for a non-axiomatic reasoning system (NARS). In: NARS2019 workshop at AGI (2019)

    Google Scholar 

  10. Nivel, E., et al.: Autocatalytic endogenous reflective architecture (2013)

    Google Scholar 

  11. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  12. Ramachandra, B., Jones, M.: Street scene: a new dataset and evaluation protocol for video anomaly detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2558–2567 (2019)

    Google Scholar 

  13. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. stat., 400–407 (1951)

    Google Scholar 

  14. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning algorithms. In: AAAI Spring Symposium: Lifelong Machine Learning (2013)

    Google Scholar 

  15. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  16. Wang, P.: Experience-grounded semantics: a theory for intelligent systems. Cogn. Syst. Res. 6(4), 282–302 (2005)

    Article  Google Scholar 

  17. Wang, P.: Insufficient knowledge and resources-a biological constraint and its functional implications. In: AAAI Fall Symposium: Biologically Inspired Cognitive Architectures (2009)

    Google Scholar 

  18. Wang, P., et al.: Omni-DETR: omni-supervised object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9367–9376 (2022)

    Google Scholar 

  19. Wang, P., Hammer, P., Isaev, P., Li, X.: The conceptual design of openNARS 3.1. Technical report, Temple University, Philadelphia, United States (2020)

    Google Scholar 

  20. Wang, P., Hofstadter, D.: A logic of categorization. J. Exp. Theor. Artif. Intell. 18(2), 193–213 (2006)

    Article  MATH  Google Scholar 

  21. Wang, P., Li, X., Hammer, P.: Self in NARS, an AGI system. Front. Robot. AI 5, 20 (2018)

    Article  Google Scholar 

  22. Wünsche, R.: A vision prototype for openNARS

    Google Scholar 

  23. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: Coca: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022)

Download references

Acknowledgements

Special thanks to Patrick Hammer, Tony Lofthouse and Robert Johansson for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wünsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wünsche, R. (2023). An Adaptive Vision Architecture for AGI Systems. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33469-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33468-9

  • Online ISBN: 978-3-031-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics