Skip to main content

A Unified Structured Framework for AGI: Bridging Cognition and Neuromorphic Computing

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13921))

Included in the following conference series:

  • 926 Accesses

Abstract

Cognitive modeling and neuromorphic computing are two promising avenues to achieve AGI. However, neither of them has achieved intelligent agents with human-like proficiency so far. One possibility is that the two fields have developed in isolation at different levels, ignoring each other’s complementary features. In this paper, from a graph perspective, we present a framework that bridges the gap through cross-hierarchy structured representation and computation. Combining top-down and bottom-up design methodologies, coherent coordination of cognitive architecture and underlying neural dynamics is realized, where interpretable representation of entities and relations is constructed by hierarchical neuromorphic graph (HNG) via multi-scale projecting and abstraction. An assembly-based graph-oriented spiking message network is dedicatedly developed to conduct reasoning and learning. Evaluation on multi-modal reasoning benchmark indicates that the approach outperforms pure symbolic rule-based and non-neuromorphic baselines. Besides, the framework is flexible and compatible with the mainstream cognitive architectures meanwhile maintaining rich biological fidelity in order for exploiting non-negligible fine-grained mechanisms that are crucial for functionality emerging. Our methodology offers a brand-new guideline for the creation of more intelligent, adaptable, and autonomous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, G.A., Eugene, G., Pribram, K.H.: Plans and the structure of behaviour. In: Systems Research for Behavioral Sciencesystems Research, pp. 369–382. Routledge (2017)

    Google Scholar 

  2. Newell, A., Simon, H.A., et al.: Human Problem Solving, vol. 104. Prentice-hall Englewood Cliffs, NJ (1972)

    Google Scholar 

  3. Laird, J.E.: The Soar Cognitive Architecture. MIT press, Cambridge (2019)

    Google Scholar 

  4. Anderson, R.J.: The Architecture of Cognition, vol. 5. Psychology Press, London (1996)

    Google Scholar 

  5. O’reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. MIT press, Cambridge (2000)

    Book  Google Scholar 

  6. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  7. Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Netw. 20(3), 290–297 (2007)

    Article  MATH  Google Scholar 

  8. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)

    Article  Google Scholar 

  9. Mead, C., Ismail, M.: Analog VLSI implementation of neural systems, vol. 80. Springer, Berlin (1989)

    Book  Google Scholar 

  10. Furber, S.B., et al.: Overview of the spinnaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2012)

    Article  MathSciNet  Google Scholar 

  11. Schmitt, S., et al.: Neuromorphic hardware in the loop: training a deep spiking network on the BrainScales wafer-scale system. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2227–2234. IEEE (2017)

    Google Scholar 

  12. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  13. Ben Benjamin, V., et al.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  14. Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019)

    Article  Google Scholar 

  15. Zhao, R., et al.: A framework for the general design and computation of hybrid neural networks. Nat. Commun. 13(1), 3427 (2022)

    Article  MathSciNet  Google Scholar 

  16. Xu, M., Liu, F., Pei, J.: Endowing spiking neural networks with homeostatic adaptivity for APS-DVS bimodal scenarios. In: Companion Publication of the 2022 International Conference on Multimodal Interaction, pp. 12–17 (2022)

    Google Scholar 

  17. Zheng, H., Lin, H., Zhao, R., Shi, L.: Dance of SNN and ANN: Solving binding problem by combining spike timing and reconstructive attention. arXiv preprint arXiv:2211.06027, 2022

  18. Hao, Y., Huang, X., Dong, M., Bo, X.: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule. Neural Netw. 121, 387–395 (2020)

    Article  Google Scholar 

  19. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56–67 (2018)

    Article  Google Scholar 

  20. Yujie, W., et al.: Brain-inspired global-local learning incorporated with neuromorphic computing. Nat. Commun. 13(1), 65 (2022)

    Article  Google Scholar 

  21. Yang, Y., et al.: Bio-realistic and versatile artificial dendrites made of anti-ambipolar transistors. arXiv preprint arXiv:2212.01277 (2022)

  22. Yang, Y., et al.: A mempolar transistor made from tellurium. arXiv preprint arXiv:2301.01986 (2023)

  23. Wang, Y., et al.: Self-doping memristors with equivalently synaptic ion dynamics for neuromorphic computing. ACS Appl. Mater. Int. 11(27), 24230–24240 (2019)

    Article  Google Scholar 

  24. Yang, Y., et al.: A new opportunity for the emerging tellurium semiconductor: making resistive switching devices. Nat. Commun. 12(1), 6081 (2021)

    Article  Google Scholar 

  25. Marr, David: Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. MIT press, Cambridge (2010)

    Book  Google Scholar 

  26. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010)

    Article  Google Scholar 

  27. O’keefe, J., Nadel, L.: Précis of o’keefe & nadel’s the hippocampus as a cognitive map. Behav. Brain Sci. 2(4), 487–494 (1979)

    Google Scholar 

  28. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT press, Cambridge (2003)

    Google Scholar 

  29. Laird, J.E.: An analysis and comparison of ACT-R and soar. arXiv preprint arXiv:2201.09305 (2022)

  30. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. Ai Mag. 38(4), 13–26 (2017)

    Google Scholar 

  31. Xu, M., Wu, Y., Deng, L., Liu, F., Li, G., Pei, J.: Exploiting spiking dynamics with spatial-temporal feature normalization in graph learning. arXiv preprint arXiv:2107.06865 (2021)

  32. Gu, F., Sng, W., Taunyazov, T., Soh, H.: TactileSGNET: a spiking graph neural network for event-based tactile object recognition. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9876–9882. IEEE (2020)

    Google Scholar 

  33. Dold, D., Garrido, J.S., Chian, V.C., Hildebrandt, M., Runkler, T.: Neuro-symbolic computing with spiking neural networks. In: Proceedings of the International Conference on Neuromorphic Systems, vol. 2022, pp. 1–4 (2022)

    Google Scholar 

  34. Bellec, G., et al.: A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 11(1), 3625 (2020)

    Article  Google Scholar 

  35. Papadimitriou, C.H., Vempala, S.S., Mitropolsky, D., Collins, M., Maass, W.: Brain computation by assemblies of neurons. Proc. Nat. Acad. Sci. 117(25), 14464–14472 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Innovation 2030 - New Generation of Artificial Intelligence, China project (2020AAA0109101), Zhejiang Lab’s International Talent Fund for Young Professionals, and National Natural Science Foundation of China (No. 62106119, 62276151). We thank Lukai Li for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Pei or Lei Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, M., Zheng, H., Pei, J., Deng, L. (2023). A Unified Structured Framework for AGI: Bridging Cognition and Neuromorphic Computing. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds) Artificial General Intelligence. AGI 2023. Lecture Notes in Computer Science(), vol 13921. Springer, Cham. https://doi.org/10.1007/978-3-031-33469-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33469-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33468-9

  • Online ISBN: 978-3-031-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics