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Abstract. We integrate foundational theories of meaning with a math-
ematical formalism of artificial general intelligence (AGI) to offer a com-
prehensive mechanistic explanation of meaning, communication, and sym-
bol emergence. This synthesis holds significance for both AGI and broader
debates concerning the nature of language, as it unifies pragmatics, log-
ical truth conditional semantics, Peircean semiotics, and a computable
model of enactive cognition, addressing phenomena that have tradition-
ally evaded mechanistic explanation. By examining the conditions un-
der which a machine can generate meaningful utterances or comprehend
human meaning, we establish that the current generation of language
models do not possess the same understanding of meaning as humans
nor intend any meaning that we might attribute to their responses. To
address this, we propose simulating human feelings and optimising mod-
els to construct weak representations. Our findings shed light on the
relationship between meaning and intelligence, and how we can build
machines that comprehend and intend meaning/].
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1 Introduction

Linguists and philosophers have offered various accounts of the behaviour of
language and the human mind. Computer scientists have posited mechanisms to
replicate these variously described behaviours piecemeal. The former is a top-
down approach, while the latter is bottom up. Unfortunately, it is difficult to
connect the two. Large language models (LLMs) such as ChatGPT are a bottom
up attempt to capture the behaviour of written language, and are remarkably
good at giving human-like responses to questions. Yet it is unclear the extent to
which an LLM actually means what it says or understands what we mean. AGI
should not just parrot what we expect but respond to what we mean, and mean
what it says. Yet how we would we know the difference? Computers represent
syntax, and from correlations in syntax an LLM is supposed to glean meaning.
However, meaning is not well defined. We need to connect top-down descriptions
of meaning to bottom-up computation. How might we compute meaning?

! Appendices are to be found on GitHub [1].
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1.1 Grice’s foundational theory of meaning

Grice’s foundational theory of meaning [2] holds that meaning is what the
speaker intends to convey to the listener. Grice gave an illustrative example,

[the speaker] o means m by uttering w iff o intends in uttering u that
1. his audience come to believe m,

2. his audience recognize this intention [called m-intention|, and

3. (1) occur on the basis of (2). |3]

This is foundational because it specifies the facts in virtue of which expressions
have particular semantic properties (instead of those properties), and is illustra-
tive of our goal (to connect bottom up computation to top down description).

1.2 A foundational theory of foundational theories

Were we to accept that meaning is in virtue of m-intent? , then from what does
that arise? M-intent should not be conflated with intent in general because it
pertains to what one means by an expression, whereas intent more generally is
any goal in service of which decisions are made. The former stems from the latter
[6], and so there exists a theory arguing that meaning exists in virtue of one’s
intent in the sense of goals. Grice’s theories are better established and widely
accepted with respect to meaning, but these theories are not mutually exclusive
and the depiction of meaning as in virtue of intent in general is a bridge we
can use to connect Grice’s top down description to bottom-up computational
processes. This is because it explains intent in virtue of inductive inference,
to argue that meaningful communication with an AI, or any organism, requires
similar feelings and experiences, in order to construct similar goals and “solutions
to tasks” [6] (an argument formed in relation to the Fermi Paradox [7]). This
explanation was too vague to be of significance for engineering. For example it
assumed a measure, “weakness”’, which was not well defined. However, weakness is
well defined in a more recent formalism of artificial general intelligence (AGI) |8,
1] and enactive cognition, so we will instead reformulate the theory using that
formalism, extending it to account for meaningful communication. We begin
with cognition formalised using tasks. We then formalise an organism using
tasks to provide a novel account of preferences, symbol systems and meaningful
communication. We then describe how an organism might mean what we think
it means by what it says, or infer what we mean by what we say.

2 Meaning, from the top down

Intent only exists in virtue of a task one is undertaking |6]. A task is what we
get if we add context to intent, expressing what is relevant about both the agent

2 We note that Grice later expanded upon the notion of m-intent [4, 5], and that there
are other widely accepted descriptions of meaning (Russell, Frege, Searle, David-
son, Wittgenstein, Lewis, Kripke etc), some of which we touch upon as part of our
formalism. However, paper length limits what we discuss.



On the Computation of Meaning 3

and the environment. A task can be used to formalise enactive cognition [9], dis-
carding notions of agent and environment in favour of a set of decision problems
[6, 1]. A task is something which is completed, like a goal, so intent is formalised
like a goal [10]. A goal is a set of criteria, and if those criteria are satisfied,
then it is satisfied and the task complete. To formalise meaning we must avoid
grounding problems [L1]. As such these criteria are grounded by representing the
environment, of which cognition is part, as a set of declarative programs [12] of
which the universe is the interpreter [13]:

Definition 1 (environment).

— We assume a set @ whose elements we call states, one of which we single
out as the present state.

— A declarative program is a function f : & — {true, false}, and we write
P for the set of all declarative programs. By an objective truth about a
state ¢, we mean a declarative program f such that f(¢) = true.

Definition 2 (implementable language).

— U ={V C P:V is finite} is a set whose elements we call vocabularies,
one of whicl we single out as the vocabulary v.

—Ly={lCo:3pcd (Ypel:p(p)=true)} is a set whose elements we call
statements. L, follows @ and v, and is called implementable language.

— | € Ly is true iff the present state is ¢ and Vp € | : p(¢) = true.

— The extension of a statement a € Ly, is Z, ={b € Ly, : a C b}.

— The extension of a set of statements AC Ly is Za= | Z,.
acA

(Notation) Z with a subscript is the extension of the subscripﬁ.

A goal can now be expressed as a statement in an implementable language. An
implementable language represents sensorimotor circuitryﬁ with which cognition
is enacted. It is not natural language, but a dyadic system with exact meaning.
Peircean semiosis [14] is integrated to explain natural language. Peirce defined
a symbol as a sign (E.G. the word “pain”), a referent (E.G. the experience of
pain), and an interpretant which links the two, “determining the effect upon” the
organism. A goal arguably functions as an interpretant because it determines the
effect of a situation upon an organism that pursues it [6]. Rather than formulate
a task and then rehash the argument that a task is a symbol, we’ll just formalise
a symbol using the existing definition of a task |1, definition 3]:

Definition 3 (v-task). For a chosen v, a task « is a triple (Sq, Do, M), and
Iy is the set of all tasks given v. Give a task a:

— S4 C Ly is a set whose elements we call situations of a.

3 The vocabulary v we single out represents the sensorimotor circuitry with which an
organism enacts cognition - their brain, body, local environment and so forth.

e.g. Zs is the extension of s.

5 Mind, body, local environment etc.

4
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— Sa has the extension Zs,, whose elements we call decisions of a.
— Do ={z€ Zg, : zis correct} is the set of all decisions which complete .
— M,={l€eLy:Zs, NZ = D,} whose elements we call models of «.

(Notation) If w € I, then we will use subscript w to signify parts of w, meaning
one should assume w = (S, Dy, M,,) even if that isn’t written.

(How a task is completed) Assume we’ve a v-task w and a hypothesis h € Ly s.t.

1. we are presented with a situation s € S,,, and
2. we must select a decision z € Zy N Zp,.
3. If z € Dy, then z is correct and the task is complete. This occurs if h € M,,.

Definition 4 (symbol). A task « is also a Peircean symbol:

— s €8, is a sign of a.

— d € D, is the effect of a upon one who perceives it. d may be sensorimotor
activity associated with perception, and thus a referent.

— m € M, is an interpretant linking signs to referents.

Tasks may be divided into narrower child tasks, or merged into parent tasks.

Definition 5 (child, parent and weakness). A symbol « is a child of w if
Sa C Sy and D, C D,,. This is written « C w. We call |D,| the weakness of a
symbol o, and a parent is weaker than its children.

2.1 Extending the formalism

The child and parent relation means a symbol is also a symbol system in that
it can be subdivided into child symbols [6]. With this in mind, we can define an
organism that derives symbols from its experiences, preferences and feelings.

Definition 6 (organism). An organism o is a quintuple (0,4, ¢0,54, M0, fo), and
the set of all such quintuples is O where:

— v, s a vocabulary we single out as belonging to this organisnﬁ.

— We assume a v,-task 3 wherein Sg is every situation in which o has made

a decision, and Dg contains every such decision. Given the set I,, of all

tasks, ¢o = {w € Iy, : w C B} is a set whose members we call experiences.

A symbol system s, = {a € I, : there exists w € ¢, where M,NM,, # 0}

is a set whose members we call symbols. s, is the set of every task to which

it is possible to generalise (see (1, definition 5]) from an element of ¢,.

— Ny 5, = N is a function we call preferences.

— fo : 8o — fo is a function, and §, C Ly, a set whose elements we call
feelings, being the reward, qualia etc, from which preferences arisdd.

6 The corresponding Ly, is all sensorimotor activity in which the organism may engage.
" Note that this assumes qualia, preferences and so forth are part of physical reality,
which means they are sets of declarative programs.
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Each symbol in s, shares an interpretant at least one experienceﬁ. This is so
feelings f, ascribed to symbols can be grounded in experience. Humans are
given impetus by a complex balance of feelings (reward signals, qualia etc). It is
arguable that feelings eventually determine all value judgements |10]. As Hume
pointed out, one cannot derive a statement of what ought to be from a statement
of what is. Feelings are an ought from which one may derive all other oughts.
If meaning is about intent, then the impetus that gives rise to that intent is an
intrinsic part of all meaning [7]. Intent is a goal. A goal is statement of what
ought to be that one tries to make into a description of what is, by altering the
world to fit with ought to be. We assume feelings are consequence of natural
selection, and so explain meaning in virtue of a mechanistic process. Each [ € L
represents sensorimotor activity, which from a materialist perspective includes
feelings. Thus, f, is a function from symbols to sensorimotor activity. Statements
and symbols “mean something” to the organism if the organism can ascribe
feelings to them. As every symbol in s, contains an interpretant which is part
of the organism’s experience, the organism can ascribe feelings to all symbols on
the basis of that experience. If one is not concerned with qualia [16, [17], then
feelings may be simulated with “reward” functions. However, to simulate feelings
that result in human-like behaviour is a more difficult proposition. Rather than
trying to describe human-like feelings, we simplify our analysis by assuming the
preferences [18] n, which are determined by experience of feelings.

2.2 Interpretation

The situation at hand s € L, is a statement o experiences as a sign and then
interprets using a € s, s.t. s € S4, to decide d € Z; N Zyy,, -

Definition 7 (interpretation). Interpretation is a sequence of steps:

1. The situation at hand s € L,, signifies a symbol a € 5, if s € S,.

2. 55 ={a €5,:5€S,} is the set of all symbols which s signifies.

3. If 55 # 0 then s means something to the organism in the sense that there
are feelings which can be ascribed to symbols in s3.

4. If s means something, then o uses a € argmax n,(w) to interpret s.
wesy

5. The interpretation is a decision d € Zs N ZMaE.

3 Communication of meaning

We develop our explanation in four parts. First, we define exactly what it means
for an organism to affect and be affected by others. Second, we examine how one

8 A symbol system is every task to which one may generalise from one’s experiences.
Only finitely many symbols may be entertained. In claiming our formalism pertains
to meaning in natural language we are rejecting arguments, such as those of Block
and Fodor [15], that a human can entertain an infinity of propositions (because time
and memory are assumed to be finite, which is why v, is finite).

% How an organism responds to a sign that means nothing is beyond this paper’s scope.
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organism may anticipate the behaviour (by inferring the end it serves) of another
or order to change how they are affected. Third, we examine how said organism
may, having anticipated the behaviour of the other, intervene to manipulate the
other’s behaviour to their benefit (so that the now latter affects the former in a
more positive way). And finally, we examine what happens when each organism
is attempting to manipulate the another. Each anticipates the other’s manip-
ulation, because each anticipates the other’s behaviour by inferring its intent.
An organism can then attempt to deceive the other organism (continue the ma-
nipulative approach), or attempt to co-operate (communicate in good faith), a
choice resembling an iterated prisoner’s dilemma. We assume organisms make
decisions based upon preferences, but preferences are not arbitrary. Feelings and
thus preferences exist in virtue of natural selection, which to some extent must
favour rational behaviour (to the extent that selection is significantly impacted).
In this might be understood as alignment, to use Al safety terms. One’s feelings
are the result of alignment by genetic algorithm, and one’s preferences are the
result of reinforcement learning using those feelings (to determine reward). Thus
we assume preferences are a balance of what is rational, and what is tolerably
irrational, given the pressures of natural selection. We call this balance reason-
ably performant. The specifics of inductive inference are beyond the scope of
this paper, however definitions and formal proofs pertaining to inductive infer-
ence from child to parent tasks are included in the appendix |1]. The necessary
inductive capabilities are assumed with being reasonably performant.

3.1 Ascribing intent

Definition 8 (affect). To affect an organism o is to cause it to make a different
decision than it otherwise would have. € affects o if 0 would have made a decision
d, but as a result of a decision ¢ made by €, 0 makes decision g # d.

Let € and o be organisms. If € affects o0, and assuming v, is sufficient to allow
o to distinguish when it is affected by ¢ from when it is not (meaning all else
being equal ¢’s interventions are distinguishable by the presence of an identity
(see appendices), then there exists experience (¢ € ¢, such that d € Dee if o
is affected by €. ¢! is an ostensive definition [19] of ¥’s intent (meaning it is a
child task from which we may infer the parent representing #’s most likely intent
and thus future behaviour) [6]. In the absence of more information, the symbol
most likely to represent s intent is the weakest |6], meaning « € s, s.t. | Zy| is
maximised. However, because o assumes ¢ has similar feelings and preferences
6, 1UE n, is an approximation of what ¢ will do. Accordingly the symbol most
likely to represent €’s intent would be the “weakest” of goals preferred by o which,
if pursued by €, would explain why € has affected o as it has. This is 7{ s.t.

75 € argmax |Z,| s.t. & = argmax no(a) and Iy = {w € Ty, : Mee N M, # 0}
acRr aelt °

10 Members of a species tend to have similar feelings, experiences and thus preferences.
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3.2 From manipulation to meaningful communication

We’ve explained inference of intent in counterfactual terms, answering “if places
were exchanged, what would cause o to act like £7”. Intent here is “what is ¢
trying to achieve by affecting 0”, rather than just “what is £ trying to achieve”.

Manipulation: Because it is reasonably performant, o infers the intent of an
organism ¢ that affects o, in order to plan ahead and ensure its own needs will be
met. However o can go a step further. It can also attempt to influence what € will
do. If being reasonably performant requires o infer £’s intent because ¢ affects o,
then it may also require o affect £ to the extent that doing so will benefit o.

Communication: If both o and ¢ are reasonably performant, each may attempt
to manipulate the other. Ascribing intent to one another’s behaviour in order to
manipulate, each must anticipate the other’s manipulative intent. Subsequently
each organism must go yet another step further and account for how its own ma-
nipulative intent will be perceived by the other. As in a sort of iterated prisoner’s
dilemma, the rational choice may then be to co-operate. Because each symbol
represents a goal it defines a limited context for co-operation; so two organisms
might simultaneously co-operate in pursuit of one goal while competing in pur-
suit of another (E.G. two dogs may co-operate to hunt while competing for a
mate). If there is sufficient profit in affecting another’s behaviour, then knowing
one’s own intent is perceived by that other and that the other will change its
behaviour in response to one’s changed intent, it makes sense to actually change
one’s own intent in order to affect the other. This bears out experimentally in re-
inforcement learning with extended environments [20]. The rational choice may
then be to have co-operative intent, assuming € can perceive o’s intent correctly,
and that £ will reciprocate in kind. For a population of reasonably performant
organisms, induction (see [1]) with co-operative intent would favour symbols that
mean (functionally) similar things to all members of the population. Repeated
interactions would give rise to signalling conventions we might call language.

Meaning: Let us re-frame these ideas using the example from the introduction.
We'll say two symbols « € s¢ and w € s, are roughly equivalent (written o ~ w)
to mean feelings, experiences and thus preferences associated with a symbol are
in some sense the same for two organisms (meaning if a &~ w then fe(a) = f,(w)
etc). In other words we're suggesting it must be possible to measure the similarity
between symbols in terms of feelings, experiences and thus preferences, and so
we can assert a threshold beyond which two symbols are roughly equivalent.

€ means «a € s¢ by deciding v and affecting o iff £ intends in deciding u:
1. that o interpets the situation at hand with w € s, s.t. w = «,
2. 0 recognize this intention, for example by predicting it according to

v € argmax |Z,| s.t. & = argmax n,(a), Iy = {w € Iy, : MceNM,, # 0}
acR aerlt ’
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3. and (1) occur on the basis of (2), because ¢ intends to co-operate and
so will interpret the situation at hand using what it believes of o’s intent.

The above pertains to co-operation. To comprehend meaning:

Organisms must be able to affect one another.

Organisms must have similar feelings, and

similar experiences, so s, and s¢ contain roughly equivalent symbols.
Similar preferences then inform the correct inference of intent.
Finally, all this assumes organisms are reasonably performant.

CUR LN

4 Talking to a machine

An LLM is trained to mimic human preferences. However, an LLM is not given
impetus by feelings, and so cannot entertain roughly equivalent symbols. This
is not to say we cannot reverse engineer the complex balance of human-like
feelings, merely that we have not. If an LLM has impetus, it is to be found in
our prompts. It is reminiscent of a mirror test, which is a means of determining
whether animals are self aware. For example, a cat seeing itself in the mirror
may attack its reflection, not realising what it sees is itself. In an LLM we face a
mirror test of our own, but instead of light it reflects our own written language
back at us. We ascribe motives and feelings to that language because we have
evolved to infer the intent of organisms compelled by feelings [6]. An LLM hijacks
what we use to understand one another (that we assume others are motivated by
similar feelings [10]). We’ve a history of ascribing feelings and agency to things
possessed of neither. In the 1970s, a chatbot named ELIZA made headlines as
its users attributed feelings and motives to its words |21]. Like ELIZA, today’s
LLMs not only do not mean what we think they mean by what they say, but do
not mean anything at all. This is not an indictment of LLMs trained to mimic
human preferences. The meaning we ascribe to their behaviour can be useful,
even if that behaviour was not intended to mean anything.

The Hall of Mirrors: Even if we approximate human feelings, an LLM like
ChatGPT is not reasonably performant. It is maladaptive, requiring an abun-
dance of training data. This may be because training does not optimise for a
weak representation, but settles for any function fitting the data] [6]. Returning
to mirror analogies, imagine a hall of mirrors reflecting an object from different
angles. A weak or simple representation would be one symbol « € s, represent-
ing the object, which is then interpreted from the perspectives a,b,c,d € S,
of each mirror. A needlessly convoluted representation of the same would in-
stead interpret a, b, ¢ and d using different symbols. These would be a’s children
w,7,6,0 C a such that a € S,,b € Sy,c € Ss,d € S,. This latter representation
fails to exploit what is common between perspectives, which might allow it to
generalise [6] to new perspectives. That an LLM may not learn sufficiently weak

11 Albeit with some preference for simplicity imparted by regularisation.
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representations seems consistent with their flaws. One well documented example
of this is how an LLM may convincingly mimic yet fail to understand arithmetic
[22], but such flaws may more subtly manifest elsewhere. For example, when
we queried Bing Chat (on the 27? of February 2023 |1, p.11]) with the name
and location of a relatively unknown individual who had several professions and
hobbies mentioned on different sites, Bing concluded that different people with
this name lived in the area, each one having a different hobby or profession.

Incomprehensibility: If we are to build machines that mean what we think
they mean by what they say, then we must emulate human feelings and expe-
riences. It is interesting to consider where this may lead. If we do not get the
balance of feelings quite right, we might create an organism that means what
it says, but whose meanings may be partially or utterly incomprehensible to us
because the resulting preferences are unaligned with ours. In the introduction
we mentioned ideas on which this paper was founded were used to relate the
Fermi paradox to control of and communication with an AGI [7]. We can extend
that notion. Assume we are affected by an organism. If the events befalling us
are set in motion by preferences entirely unlike our own, then we would fail to
ascribe the correct intent to the organism. We may fail entirely to realise there
is an organism, or may ascribe many different intents as in the hall of mirrors
analogy. Furthermore, v, determines what can or cannot be comprehended by
an organism (see appendices). v, may contain nothing akin to the contents of
v¢, making o incapable of representing and thus comprehending ¢’s intent.

Conclusion: We have extended a formalism of artificial general intelligence,
connecting bottom up computation to top down notions of meaning. This is
significant not just to AGI but to wider debates surrounding language, meaning
and the linguistic turn. While we focused on Gricean notions of meaning due to
publication constraints, the formalism is by no means limited to that. For exam-
ple, the logical truth conditional meaning of statements is in their extension. We
have described the process by which meaningful communication can take place
and the prerequisites thereof. We conclude that human-like feelings and weak
representations should give us systems that comprehend and intend meaning.
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