Skip to main content

Low Memory Attacks on Small Key CSIDH

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2023)

Abstract

Despite recent breakthrough results in attacking SIDH, the CSIDH protocol remains a secure post-quantum key exchange protocol with appealing properties. However, for obtaining efficient CSIDH instantiations one has to resort to small secret keys. In this work, we provide novel methods to analyze small key CSIDH, thereby introducing the representation method —that has been successfully applied for attacking small secret keys in code- and lattice-based schemes— also to the isogeny-based world.

We use the recently introduced Restricted Effective Group Actions (\(\textsf{REGA}\)) to illustrate the analogy between CSIDH and Diffie-Hellman key exchange. This framework allows us to introduce a \(\textsf{REGA}\text {-}\textsf{DLOG}\) problem as a level of abstraction to computing isogenies between elliptic curves, analogous to the classic discrete logarithm problem. This in turn allows us to study \(\textsf{REGA}\text {-}\textsf{DLOG}\) with ternary key spaces such as \(\{-1, 0, 1\}^n, \{0,1,2\}^n\) and \(\{-2,0,2\}^n\), which lead to especially efficient, recently proposed CSIDH instantiations. The best classic attack on these key spaces is a Meet-in-the-Middle algorithm that runs in time \(3^{0.5 n}\), using also \(3^{0.5 n}\) memory.

We first show that \(\textsf{REGA}\text {-}\textsf{DLOG}\) with ternary key spaces \(\{0,1,2\}^n\) or \(\{-2,0,2\}^n\) can be reduced to the ternary key space \(\{-1,0,1\}^n\).

We further provide a heuristic time-memory tradeoff for \(\textsf{REGA}\text {-}\textsf{DLOG}\) with keyspace \(\{-1,0,1\}^n\) based on Parallel Collision Search with memory requirement M that under standard heuristics runs in time \(3^{0.75 n}/M^{0.5}\) for all \(M \le 3^{n/2}\). We then use the representation technique to heuristically improve to \(3^{0.675n}/M^{0.5}\) for all \(M \le 3^{0.22 n}\), and further provide more efficient time-memory tradeoffs for all \(M \le 3^{n/2}\).

Although we focus in this work on \(\textsf{REGA}\text {-}\textsf{DLOG}\) with ternary key spaces for showing its efficacy in providing attractive time-memory tradeoffs, we also show how to use our framework to analyze larger key spaces \(\{-m, \ldots , m\}^n\) with \(m = 2,3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, it relies on slightly modified versions of the problems, where the adversary additionally knows that there exists a solution with \(g \in \mathcal {H}\subset \mathcal {G}\).

  2. 2.

    Note that we later use \(\mathcal {O}\) also in the context of standard Landau notation for complexity statements, however, its meaning will be clear from the context.

  3. 3.

    https://github.com/Memphisd/Low-Memory-Attacks-on-Small-Key-CSIDH.

References

  1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_15

  2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14

    Chapter  Google Scholar 

  3. Albrecht, M.R., et al.: Classic McEliece: conservative code-based cryptography (2020)

    Google Scholar 

  4. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 351–387 (2021). https://doi.org/10.46586/tches.v2021.i4.351-387

  5. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA, pp. 10–24. ACM-SIAM (Jan 2016). https://doi.org/10.1137/1.9781611974331.ch2

  6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2\(^\frac{n}{20}\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  7. Bellini, E., et al.: Parallel isogeny path finding with limited memory. In: INDOCRYPT 2022. LNCS, vol. 13774, pp. 294–316. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22912-1_13

  8. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22

    Chapter  Google Scholar 

  9. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

    Chapter  Google Scholar 

  10. Bos, J., et al.: Crystals-kyber: a cca-secure module-lattice-based kem. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367. IEEE (2018)

    Google Scholar 

  11. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  12. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_18

    Chapter  Google Scholar 

  13. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary version). IACR Cryptol. ePrint Arch, p. 975 (2022). https://eprint.iacr.org/2022/975

  14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  15. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

    Chapter  Google Scholar 

  16. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low exponents. J. Cryptogr. Eng. 12(3), 349–368 (2022). https://doi.org/10.1007/s13389-021-00271-w

  17. Chi-Domínguez, J., Rodríguez-Henríquez, F.: Optimal strategies for CSIDH. Adv. Math. Commun. 16(2), 383–411 (2022). https://doi.org/10.3934/amc.2020116

  18. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical cryptanalysis of the computational supersingular isogeny problem. Cryptology ePrint Archive, Report 2019/298 (2019). https://eprint.iacr.org/2019/298

  19. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

  20. Esser, A.: Revisiting nearest-neighbor-based information set decoding. Cryptology ePrint Archive, Report 2022/1328 (2022). https://eprint.iacr.org/2022/1328

  21. Esser, A., Girme, R., Mukherjee, A., Sarkar, S.: Memory-efficient attacks on small lwe keys. Cryptology ePrint Archive (2023)

    Google Scholar 

  22. Esser, A., May, A.: Low weight discrete logarithm and subset sum in \(2^{0.65n}\) with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_4

    Chapter  MATH  Google Scholar 

  23. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16

  24. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS weil descent attack. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_3

    Chapter  Google Scholar 

  25. Glaser, T., May, A.: How to enumerate LWE keys as narrow as in kyber/dilithium. Cryptology ePrint Archive, Report 2022/1337 (2022). https://eprint.iacr.org/2022/1337

  26. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations of CSIDH: a systematic approach to efficient strategies, permutations, and bound vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 481–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_24

    Chapter  MATH  Google Scholar 

  27. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  28. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. IACR Cryptol. ePrint Arch., p. 1026 (2022). https://eprint.iacr.org/2022/1026

  30. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_24

    Chapter  Google Scholar 

  31. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  32. May, A., Ozerov, I.: A generic algorithm for small weight discrete logarithms in composite groups. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 278–289. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_17

    Chapter  MATH  Google Scholar 

  33. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  34. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The deep space network progress report 42–44, Jet Propulsion Laboratory, California Institute of Technology (Jan/Feb 1978). https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

  35. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_17

    Chapter  Google Scholar 

  36. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) a faster constant-time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_2

    Chapter  Google Scholar 

  37. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A constant-time algorithm of CSIDH keeping two points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 103-A(10), 1174–1182 (2020). https://doi.org/10.1587/transfun.2019DMP0008

  38. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16

    Chapter  Google Scholar 

  39. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  40. Robert, D.: Breaking SIDH in polynomial time. IACR Cryptol. ePrint Arch. p. 1038 (2022). https://eprint.iacr.org/2022/1038

  41. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

  42. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365700

  43. Tani, S.: Claw finding algorithms using quantum walk. Theoret. Comput. Sci. 410(50), 5285–5297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. van Hoof, I., Kirshanova, E., May, A.: Quantum key search for ternary LWE. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 117–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_7

    Chapter  MATH  Google Scholar 

  45. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sabrina Kunzweiler and Alexander May were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Esser .

Editor information

Editors and Affiliations

A The Case of Larger m

A The Case of Larger m

For larger choices of m we still assume that each coordinate is present \(\frac{n}{2m+1}\) times in the solution. For any constant m, this is the case for a polynomial fraction of all keys, and can be ensure with subexponential overhead similar to the procedure explained in Sect. 4.4. Further, we always use partial representations, i.e., the domains consist, similar to Sect. 4.2 and Sect. 4.3 of three parts of length \(\frac{(1-\delta )n}{2}, \frac{(1-\delta )n}{2}\) and \(\delta n\). Here we assume that each coordinate is present proportionally to the length of the segment, e.g., that the last segment contains each coordinate exactly \(\frac{\delta n}{2m +1}\) times, which again can be ensured at the cost of a polynomial overhead only.

As outlined in Sect. 4.5, for each choice of m we now specify the used function domains and derive the amount representations of the solution. Let us start with the case of \(m=2\).

The Case of \(m=2\). We are looking for a solution \(\textbf{v}\in \{-2,\ldots ,2\}\). For our first instantiation we use the same function definitions as in Sect. 4.3 given in Eqs. (8) and (9), where we choose a different \(\alpha \) and \(\beta \), specified later. Let us again specify the possible representations of each entry (similar to Eq. (10))

$$\begin{aligned} \begin{aligned} 0&:{} & {} \underbrace{0+0}_{z_0}, \quad{} & {} \underbrace{1-1}_{z_1},\quad{} & {} \underbrace{-1+1}_{z_1},\quad{} & {} \underbrace{2-2}_{z_2},\quad \quad \underbrace{-2+2}_{z_2},\\ 1&:{} & {} \underbrace{1+0}_{\frac{\delta n}{10}-o},\quad{} & {} \underbrace{0+1}_{\frac{\delta n}{10}-o},\quad{} & {} \underbrace{2-1}_{o},\quad{} & {} \underbrace{-1+2}_{o},\\ -1&:{} & {} \underbrace{-1+0}_{\frac{\delta n}{10}-o},\quad{} & {} \underbrace{0-1}_{\frac{\delta n}{10} -o},\quad{} & {} \underbrace{-2+1}_{o},\quad{} & {} \underbrace{1-2}_{o}.\\ 2&:{} & {} \underbrace{2+0}_{\frac{\delta n}{10}-\frac{t}{2}},\quad{} & {} \underbrace{0+2}_{\frac{\delta n}{10}-\frac{t}{2}},\quad{} & {} \underbrace{1+1}_{t}, \quad{} & {} \\ -2&:{} & {} \underbrace{-2+0}_{\frac{\delta n}{10}-\frac{t}{2}},\quad{} & {} \underbrace{0-2}_{\frac{\delta n}{10}-\frac{t}{2}},\quad{} & {} \underbrace{-1-1}_{t}. \quad{} & {} \end{aligned} \end{aligned}$$

Recall, that we have only representations on the last segment of length \(\delta n\). As we expect any coordinate to be present \(\delta n / 5\) times, we need that the numbers below the representations in every row sum to \(\delta n/5\). Therefore we have

$$ z_0+2z_1+2z_2 = \delta n/5 \quad \Leftrightarrow \quad z_0 = \delta n/5-2z_1-2z_2. $$

Further by counting the respective number of \(\pm 1\) and \(\pm 2\) entries in those representations we obtain

$$ \alpha = \frac{1}{10} +\frac{z_1+t}{\delta }\quad \text {and}\quad \beta = \frac{1}{10} +\frac{z_2-t/2+o}{\delta }, $$

while the number of representations is given as

$$ R=\left( {\begin{array}{c}\frac{\delta n}{5}\\ z_0,z_1,z_1,z_2,z_2\end{array}}\right) \left( {\begin{array}{c}\frac{\delta n}{5}\\ \frac{\delta n}{10}-o,\frac{\delta n}{10}-o,o,o\end{array}}\right) ^2\left( {\begin{array}{c}\frac{\delta n}{5}\\ \frac{\delta n}{10}-\frac{t}{2},\frac{\delta n}{10}-\frac{t}{2},t\end{array}}\right) ^2. $$

The values of \(z_1,z_2,o,t\) and \(\delta \) are subject to numerical optimization.

Increased Representations for \(m=2\). In the following we represent \(\textbf{v}\) on its last \(\delta n\) coordinates via the sum of two vectors \(\textbf{x}_0, \textbf{x}_1 \in \{-3,\ldots ,3\}^{\delta n}\). Similar to including \(-2\) and 2 entries in the case of \(m=1\) (Sect. 4.3), this leads to an increased amount of representations and in turn a runtime improvement.

First we naturally extend the definition \(\mathcal {T}^{n}(\alpha ,\beta )\) from Eq. (7) to \(\mathcal {T}^{n}(\alpha ,\beta ,\gamma )\), where in the latter case included vectors contain exactly \(\gamma n\) entries equal to \(\pm 3\) each. Then we let the new function domains be defined as

$$\begin{aligned} \begin{aligned} S_0:= & {} \mathcal {T}^{\frac{(1-\delta )n}{2}}(1/3)\times & {} 0^{\frac{(1-\delta ) n}{2}}&\times \mathcal {T}^{\delta n}(\alpha ,\beta ,\gamma )\quad \text {and}\\ S_1:= & {} 0^{\frac{(1-\delta ) n}{2}}\times & {} \mathcal {T}^{\frac{(1-\delta )n}{2}}(1/3)&\times \mathcal {T}^{\delta n}(\alpha ,\beta ,\gamma ), \end{aligned} \end{aligned}$$
(11)

Accordingly we let their common image space be \(S=\mathcal {T}^{\frac{(1-\delta )n}{2}}(1/3)\times \mathcal {T}^{\delta n}(\alpha ,\beta ,\gamma )\).

Now we obtain additional representations of any 0, \(\pm 1\) and \(\pm 2\) entry. Let us again specify all representations and how often they appear in the addition.

$$\begin{aligned} \begin{aligned} 0&:{} & {} \underbrace{0+0}_{z_0},{} & {} \quad \underbrace{1-1}_{z_1},{} & {} \underbrace{-1+1}_{z_1},{} & {} \quad \underbrace{2-2}_{z_2},{} & {} \underbrace{-2+2}_{z_2},{} & {} \quad \underbrace{-3+3}_{z_3},{} & {} \underbrace{-3+3}_{z_3},\\ 1&:{} & {} \underbrace{1+0,}_{\frac{\delta n}{10}-o-d_1}{} & {} \quad \underbrace{0+1,}_{\frac{\delta n}{10}-o-d_1}{} & {} \underbrace{2-1}_{o},{} & {} \quad \underbrace{-1+2}_{o},{} & {} \underbrace{3-2}_{d_1},{} & {} \quad \underbrace{-2+3}_{d_1},\\ -1&:{} & {} \underbrace{-1+0,}_{\frac{\delta n}{10}-o-d_1}{} & {} \quad \underbrace{0-1,}_{\frac{\delta n}{10} -o-d_1}{} & {} \underbrace{-2+1}_{o},{} & {} \quad \underbrace{1-2}_{o},{} & {} \underbrace{-3+2}_{d_1},{} & {} \quad \underbrace{2-3}_{d_1},\\ 2&:{} & {} \underbrace{2+0}_{\frac{\delta n}{10}-\frac{t}{2}-d_2},{} & {} \quad \underbrace{0+2}_{\frac{\delta n}{10}-\frac{t}{2}-d_2},{} & {} \underbrace{1+1}_{t},{} & {} \quad \underbrace{3-1}_{d_2},{} & {} \underbrace{-1+3}_{d_2},\\ -2&:{} & {} \underbrace{-2+0}_{\frac{\delta n}{10}-\frac{t}{2}-d_2},{} & {} \quad \underbrace{0-2}_{\frac{\delta n}{10}-\frac{t}{2}-d_2},{} & {} \underbrace{-1-1}_{t}{} & {} \quad \underbrace{-3+1}_{d_2},{} & {} \underbrace{1-3}_{d_2}. \end{aligned} \end{aligned}$$
(12)

Analogously to before we have

$$ z_0+2z_1+2z_2+2z_3 = \delta n/5 \quad \Leftrightarrow \quad z_0 = \delta n/5-2z_1-2z_2-2z_3. $$

Further by counting we obtain

$$\begin{aligned} \begin{aligned} \alpha&= \frac{1}{10} +\frac{z_1+t-d_1+d_2}{\delta },\quad \beta = \frac{1}{10} +\frac{z_2-t/2+o-d_2+d_1}{\delta } \quad \text {and}\quad \\ \gamma&= \frac{z_3+d_1+d_2}{\gamma } \end{aligned} \end{aligned}$$

while the number of representations increases to

$$\begin{aligned} \begin{aligned} R=&\left( {\begin{array}{c}\frac{\delta n}{5}\\ z_0,z_1,z_1,z_2,z_2,z_3,z_3\end{array}}\right) \left( {\begin{array}{c}\frac{\delta n}{5}\\ \frac{\delta n}{10}-o-d_1,\frac{\delta n}{10}-o-d_1,o,o,d_1,d_1\end{array}}\right) ^2\\&\cdot \left( {\begin{array}{c}\frac{\delta n}{5}\\ \frac{\delta n}{10}-\frac{t}{2}-d_2,\frac{\delta n}{10}-\frac{t}{2}-d_2,t,d_2,d_2\end{array}}\right) ^2. \end{aligned} \end{aligned}$$

The values of \(z_1,z_2,z_3,o,t,d_1,d_2\) and \(\delta \) are subject to numerical optimization.

Finally let us consider the case of \(m=3\).

The Case of \(m=3\). We now have a solution \(\textbf{v}\in \{-3,\dots ,3\}\). We represent this solution by using the same function domains as specified in Eq. (11), with an adapted choice of \(\alpha ,\beta \) and \(\gamma \).

The possible representations stay therefore as specified in Eq. (12), by replacing \(\frac{\gamma n}{10}\) by \(\frac{\gamma n}{14}\). Since every row has now to add up to \(\frac{\gamma n}{7}\) we obtain

$$ z_0+2z_1+2z_2+2z_3 = \delta n/7 \quad \Leftrightarrow \quad z_0 = \delta n/7-2z_1-2z_2-2z_3. $$

We now get additionally representations for the \(\pm 3\) entries in \(\textbf{v}\):

$$\begin{aligned} \begin{aligned} 3&:{} & {} \underbrace{3+0}_{\frac{\delta n}{14}-d_3},{} & {} \quad \underbrace{0+3}_{\frac{\delta n}{14}-d_3},{} & {} \underbrace{2+1}_{d_3},{} & {} \quad \underbrace{1+2}_{d_3},\\ -3&:{} & {} \underbrace{-3+0}_{\frac{\delta n}{14}-d_3},{} & {} \quad \underbrace{0-3}_{\frac{\delta n}{14}-d_3},{} & {} \underbrace{-2-1}_{d_3}{} & {} \quad \underbrace{-1-2}_{d_3}. \end{aligned} \end{aligned}$$

This leads to the adapted choices of

$$\begin{aligned} \begin{aligned} \alpha&= \frac{1}{14} +\frac{z_1+t-d_1+d_2}{\delta },\quad \beta = \frac{1}{14} +\frac{z_2-t/2+o-d_2+d_1}{\delta } \quad \text {and}\quad \\ \gamma&= \frac{1}{14} + \frac{z_3+d_1+d_2-d_3}{\gamma }. \end{aligned} \end{aligned}$$

Eventually the amount of representations is given as

$$\begin{aligned} \begin{aligned} R=&\left( {\begin{array}{c}\frac{\delta n}{7}\\ z_0,z_1,z_1,z_2,z_2,z_3,z_3\end{array}}\right) \left( {\begin{array}{c}\frac{\delta n}{7}\\ \frac{\delta n}{14}-o-d_1,\frac{\delta n}{14}-o-d_1,o,o,d_1,d_1\end{array}}\right) ^2\\&\cdot \left( {\begin{array}{c}\frac{\delta n}{7}\\ \frac{\delta n}{14}-\frac{t}{2}-d_2,\frac{\delta n}{14}-\frac{t}{2}-d_2,t,d_2,d_2\end{array}}\right) ^2 \left( {\begin{array}{c}\frac{\delta n}{7}\\ \frac{\delta n}{14}-d_3,\frac{\delta n}{14}-d_3,d3,d3\end{array}}\right) ^2. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi-Domínguez, JJ., Esser, A., Kunzweiler, S., May, A. (2023). Low Memory Attacks on Small Key CSIDH. In: Tibouchi, M., Wang, X. (eds) Applied Cryptography and Network Security. ACNS 2023. Lecture Notes in Computer Science, vol 13906. Springer, Cham. https://doi.org/10.1007/978-3-031-33491-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33491-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33490-0

  • Online ISBN: 978-3-031-33491-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics