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Publicly Auditable Functional Encryption

Vlasis Koutsos and Dimitrios Papadopoulos

The Hong Kong University of Science and Technology
{vkoutsos,dipapado}@cse.ust.hk

Abstract. We introduce the notion of publicly auditable functional en-

cryption (PAFE). Compared to standard functional encryption, PAFE
operates in an extended setting that includes an entity called auditor,
besides key-generating authority, encryptor, and decryptor. The auditor
requests function outputs from the decryptor and wishes to check their
correctness with respect to the ciphertexts produced by the encryptor,
without having access to the functional secret key that is used for decryp-
tion. This is in contrast with previous approaches for result verifiability
and consistency in functional encryption that aim to ensure decryptors
about the legitimacy of the results they decrypt.

We propose four different flavors of public auditability with respect to
different sets of adversarially controlled parties (only decryptor, encryptor-
decryptor, authority-decryptor, and authority-encryptor-decryptor) and
provide constructions for building corresponding secure PAFE schemes
from standard functional encryption, commitment schemes, and non-
interactive witness-indistinguishable proof systems. At the core of our
constructions lies the notion of a functional public key, that works as
the public analog of the functional secret key of functional encryption
and is used for verification purposes by the auditor. Crucially, in order
to ensure that these new keys cannot be used to infer additional infor-
mation about plaintext values (besides the requested decryptions by the
auditor), we propose a new indistinguishability-based security definition
for PAFE to accommodate not only functional secret key queries (as in
standard functional encryption) but also functional public key and de-
cryption queries. Finally, we propose a publicly auditable multi-input
functional encryption scheme (MIFE) that supports inner-product func-
tionalities and is secure against adversarial decryptors. Instantiated with
existing MIFE using “El Gamal”-like ciphertexts and Σ-protocols, this
gives a lightweight publicly auditable scheme.

Keywords: Functional Encryption, Auditability, Public Verifiability

1 Introduction

Functional Encryption (FE) [16,30] is a cryptographic primitive that transcends
the “all-or-nothing” decryption capabilities that classical public-key encryption
schemes provide, by allowing the decryptor to acquire pre-agreed function out-
puts of the encryptor’s data. In particular, given an encryption key ek, the en-
cryptor produces a ciphertext ct for plaintext data x. The decryptor can then



use a functional secret key skf , for an agreed function f , provided by a key-
generation authority, in order to retrieve the function output f(x). The security
of FE guarantees that the decryptor learns nothing about x other than f(x) (and
what can be inferred from it). Since it was first proposed by Boneh et al. [16]
there has been a plethora of works on FE e.g., providing efficient schemes for spe-
cific functionalities (inner product [7], quadratic [5,8,11,24]), and generalizations
of the definition for multiple inputs (Multi-Input FE (MIFE) [23, 35]), multiple
encryptors or authorities (Multi-Client FE (MCFE) [4, 20, 28] and Multi-Party
FE [6]), or dynamic sets of participants (Decentralized Dynamic FE [19]).

The selective decryption capabilities that FE provides makes it suitable for
multiple real-world applications, such as the following:

Checkable cloud storage. Consider an application where users wish to up-
load their files (e.g., images) onto a cloud service provider. For privacy purposes
uploaded files should be encrypted. However, from the cloud service provider’s
perspective it would be ideal if it could still infer some information about the
encrypted files, with the consent of the users. For example, it might wish to learn
certain file-related aggregate statistics, or ensure that the files’ contents satisfy
certain policies (e.g., the uploaded images do not contain states of déshabillé [2]).
Using FE to produce the ciphertext and providing the cloud server with appro-
priate skf simultaneously achieves the above privacy and utility properties.

Auditable financial data. Another example application comes from the field of
finance, where there exist institutions (e.g., [1,3]) that are in charge of examining
the books of business-conducting companies and organizations to ensure that
they conform to legal and financial policies. Again, FE enables such fine-grained
control without necessarily disclosing all raw data.

Private data brokerage. The abundance of data produced daily from our on-
line activity has naturally led to the notion of “data monetization”. Companies
operating as data brokers collect large volumes of data, perform useful statis-
tical analyses over them and market the results to interested buyers (e.g., for
marketing or political campaigns [21]). Due to the potentially sensitive nature
of the raw data, privacy-aware individuals could opt to use an FE scheme that
only reveals to the broker pre-agreed aggregate statistics.

While FE seems to map very nicely to the privacy requirements of these
applications, the trust model in the settings described allows for potential mis-
behavior from parties that is not captured by FE security definitions. Note that
in all applications above the party that plays the role of the FE-decryptor is
different than the party that needs to be convinced about the legitimacy of the
function outputs. For example, the cloud service provider may need to prove to
a law enforcement agency that the stored encrypted data do not violate any le-
gal policies and likewise, for our second example, auditing companies may need
to provide guarantees to governmental regulatory bodies. Finally, in our last
example, data buyers should receive a guarantee about the correctness and con-
sistency of the purchased statistical analyses results with respect to the raw
data, to avoid having to blindly trust the broker. Based on the above, FE only
partially achieves the security requirements of the mentioned applications (al-
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lowing the decryptor to only learn function outputs). Particularly, it needs to
be augmented or complemented with other cryptographic techniques to enable
results verification.

There exists a limited number of works in the FE literature that aims to en-
rich schemes with some notion of result verification. Badrinarayanan et al. [10]
proposed verifiable FE and more recently Badertscher et al. [9] proposed a re-
laxation of this notion under various adversarial models called consistent FE.
However, both these works operate in a different security model than the ones
described above, as they aim to protect the decryptor against attacks launched
by a misbehaving encryptor, authority, or both. That is, at a very high level, the
decryptor can run a verification algorithm that ensures there is a common “ex-
planation” for all decrypted function outputs (see detailed discussion in related
work section below). That said, this verification algorithm may require access to
the functional decryption keys skf for different functions f , which is perfectly
acceptable in case it will be executed by the decryptor (who is already entrusted
with these keys). Importantly, the problem we are concerned with is strictly
harder: an external party needs to be able to verify decrypted results without
access to skf and the decryptor is always assumed to behave adversarially to this
goal. Hence none of these prior works for verifiable FE is applicable.

One “easy” solution to our problem would be to provide the external auditing
party with skf , allowing it to decrypt results directly. However, access to skf
allows the decryption of arbitrary sets of ciphertexts (e.g., in an application
where ciphertexts are publicly accessible). While this might be acceptable for
some cases, a more “controlled disclosure,” is more realistic and preferable in
other scenarios i.e., when the auditor has to go through the decryptor first.
Finally, an alternative “folklore” way for verifying received results is if one can
rely on an active direct communication channel between the encryptor and the
auditor. In such a setting, the encryptor can use a generic zero-knowledge proof
(ZKP) protocol to convince the auditor, when asked, that its plaintext does not
deviate from certain policies. This is far from a realistic assumption though,
as the encryptor might be unavailable or even unwilling to provide the auditor
with such information. An alternative to this would be for the encryptor to
produce, ahead of time and alongside its ciphertext, corresponding proofs of
validity, provably adhering to certain policies. Policies change, unfortunately,
meaning that the encryptor would need to engage in multiple ZKP executions
over time, which is undesirable for the same reasons as the previous example.

1.1 Our results

Motivated by the above, we introduce the notion of publicly auditable functional
encryption (PAFE), which operates in an extended setting that includes, besides
the authority, encryptor, and decryptor, an additional party named auditor.
PAFE enables the auditor to verify the decryption results/functional outputs
received from the decryptor. Unlike previous works on FE verification [9, 10],
PAFE achieves “public verifiability”, i.e., the auditor can run the verification
algorithm without access to skf . In order to achieve this, we introduce a new
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5.1 • ◦ • PA-UED Ad Ad-FE

5.2 ◦ • • PA-UAD Ad 4×Ad-FE

5.2 • • • PA-UEAD Sel 4×Sel-FE

Table 1. Auditability versions for general FE depending on the untrusted parties
and cryptographic building blocks used for the corresponding PAFE schemes. Legend:

◦=Honest, •=Adversarial. Ad/Sel stands for adaptively/selectively secure.

public parameter that we term functional public key (pkf ) for function f . This
is provided by the authority as a public analog of skf and it operates as an
“anchor-of-trust” for the auditor’s verification.

Next, we define different flavors of public auditability, based on different cor-
rupted sets among authority, encryptor, and decryptor. We stress that public
auditability is meaningful as a property when the decryptor is untrusted; it is
trivially achieved if the auditor trusts the decryptor-provided results. Besides,
any combination of the remaining entities (encryptor, authority, or both) may be
colluding with the decryptor to “fool” the auditor. Thus, we propose four defini-
tions of auditability for FE corresponding to different untrusted-participants sets
PA-UD, PA-UED, PA-UAD, PA-UEAD corresponding to untrusted decryptor,
encryptor-decryptor, authority-decryptor, and encryptor-authority-decryptor, re-
spectively, as shown in Table 1, and we explore the relations among them.

Besides auditability, PAFE must maintain the standard security definition
of FE [16, 20] i.e., the decryptor learns nothing about the plaintext, except for
function outputs. Additionally, the inclusion of functional public keys enables a
broader class of attacks from an adversary that has access only to ciphertexts,
pkf , and possibly function outputs y; but not skf . To elevate the security model
to a more realistic scenario that includes the cases we explained above, we con-
sider a mixed class of adversaries that may acquire access to functional secret
or public keys in a dynamic way. Additionally, we provide the adversary with
oracle access to the encryption and decryption algorithms. Recall that a secure
FE scheme allows for any adversary to win with non-negligible advantage only
if for all queried functional secret keys and ciphertexts, all underlying plaintexts
pairs have equal function outputs. In our PAFE extended model, adversaries
may attempt to abuse the decryption capabilities on a ciphertext ct to infer
functional evaluations for a function f for which acquiring the respective skf
would violate the FE winning conditions. To capture all adversarial cases, we
propose a new security definition for PAFE, extending the one for FE.

Additionally, we present four different constructions, each one satisfying a
different public auditability flavors. Table 1 depicts the respective cryptographic
components and the achieved Security/Public-Auditability types. As we discuss
in the next part, we build our PAFE using secure FE schemes, enhanced with
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appropriate use of commitment schemes to “anchor” the functional public keys
pkf , and non-interactive witness indistinguishability (NIWI) proof systems to
force the untrusted parties to prove the correctness of their computations. For the
untrusted key-generating authority case (PA-UAD, PA-UEAD), we also expand
upon the replication techniques of Badrinarayanan et al. [10].

Our first four schemes work for arbitrary classes of functions (as long as
the underlying FE supports them). In the last part of the paper we design a
publicly auditable multi-input FE (MIFE) scheme specifically for inner-product
functionalities, i.e., linear combinations between encrypted vectors and public
weights. Using the MIFE of [7], which produces “El Gamal”-style ciphertexts
as a building block, combined with classic Σ-protocols [13,17] yields an efficient
publicly auditable scheme against untrusted decryptors.

1.2 Overview of techniques

The introduction of the functional public key in the FE setting poses a “mod-
eling” challenge. Even though pkf should be uniquely tied to skf for a specific
function f , it should not reveal anything about its private counterpart or the
plaintext of the encryptor. To ensure this, we compute pkf as a perfectly binding
and computationally hiding commitment of skf . Due to the perfectly binding
property no adversary can generate two different functional secret keys that map
to the same functional public key which makes the auditability properties easier
to prove. The computational hiding property ensures that no bounded-resources
adversary can infer any information about skf from its pkf counterpart, hence
function outputs that have not been explicitly queried for via the decryption
oracle are protected.

However, augmenting IND-secure FE schemes to build secure PAFE schemes
is not trivial, due to the diversification of the winning conditions between the
IND-security game for FE schemes and that of PAFE that we mentioned above.
One way to achieve this would be to restrict ourselves to weaker adversaries.
E.g., consider an extremely limited setting where the adversary (after setup)
first declares all the secret and public functional keys it wants, as well as all
plaintext pairs to be encrypted and ciphertexts to be decrypted. Having access
to all this information allows us to check which winning conditions are not vi-
olated each time and construct the keys accordingly (either “honestly” or as
“dummies”). Clearly, we would prefer to achieve security against more general
adversarial behavior. To this end, we use NIWI proofs to combat such adver-
sarial behavior based on the different winning conditions of the two games and
achieve fully adaptive security, i.e., there is no restriction in the order in which
the adversary issues its different queries. Specifically, our PA-UD and PA-UED
constructions leverage the setup performed by the trusted authority to construct
an adaptively secure PAFE scheme based on an adaptively secure FE scheme,
perfectly binding and computationally hiding commitments and perfectly sound
and computationally witness indistinguishable NIWI proof system.

For the cases where the authority is considered untrusted, we need to employ
multiple instances of FE where the function output derives from the majority
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of the decryptions and enrich our NIWI relations accordingly, using techniques
similar to [10]. Importantly, in the PA-UAD setting we can still construct an
adaptively secure PAFE scheme by leveraging that the encryptor is trusted.
This derives specifically from a combination of all ciphertexts using a common
plaintext x with complex relations proving a threshold of correct execution of
the Setup, Key-Generation, and Decryption algorithms. However, in the last case
where all entities are untrusted PA-UEAD we do not have such guarantees and
we can only achieve a selective type of security, as follows: We require that the
encryptor provide all plaintext pair queries, before generating any functional
secret keys. While this is more limited than the adaptive security of the first
three schemes, it arguably suffices for certain applications (e.g., for the cloud
application we discussed above, consider the case where all data is uploaded
ahead of time, before auditing functions are chosen).

The four different corruption sets result in four discrete public auditability
definitions of their own, which we divide into two subcategories depending on
whether the authority is trusted or not. A similar division can also be done on
whether the encryptor is trusted or not, which results in an interesting realization
about the public auditability definitions. For the former cases (PA-UD,PA-UAD),
the auditor is guaranteed to receive the function output f(x) that corresponds
to the plaintext x that the encryptor has used to produce its ciphertext, and
specifically for function f that the auditor holds its respective pkf . However, for
the cases where the encryptor is untrusted (PA-UED,PA-UEAD), it can generate
its ciphertext arbitrarily. Therefore, a notion of “consistency” has to suffice to
the auditor, which results to an existential condition for x to be in the domain
of f

(

whose respective pkf the auditor holds and decryption returns f(x)
)

.

2 Related work

Badrinarayanan et al. [10] were the first to consider, in the FE setting, the
possibility of encryptors colluding with the authority to try and “cheat” the
decryptor into receiving falsified or meaningless function outputs. To safeguard
against such attacks, they proposed verifiable FE, including algorithms for the
verification of the ciphertext production and the key generation. The verifiability
property states that if both algorithms succeed, then decryptors always get a
function output (for function f) of a plaintext in the domain of f . This is a
very strong definition, as it quantifies over all mpk, ct, f , skf the existence of a
plaintext x whose function outputs are the result of the decryption algorithm.
Interestingly, this is actually the best decryptors can ask for, since the ciphertext
can be generated arbitrarily. More efficient verifiable FE schemes were more
recently proposed for inner-product functionalities using pairing-based NIWIs
and a perfectly correct inner-product functional encryption scheme [33], and for
general functionalities via the use of trusted execution environments [34].

Following in the same line of works, Badertscher et al. [9] proposed the notion
of consistency for FE schemes which builds on the idea of [10] in the following
way. Additionally to considering the case where both the encryptor and the au-
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thority collude, they examine also the cases where just one of the two entities try
to “cheat” the decryptor. They observe that in both cases where the encryptor
is corrupted, a similar property as in [10] suffices, however, when the encryp-
tor is honest, then the decryptor could request a stronger guarantee, i.e., that
it gets the function output of the specific plaintext x that the encryptor used
to generate the ciphertext ct. The authors explore the relations between their
consistency notions and other notions of security (i.e., IND-CPA, IND-CCA,
CFE), provide compilers to build consistent FE schemes from FE, NIZKs, and
NIWIs, and provide concrete constructions for consistent FE for inner-product
functionalities, in the presence of a corrupted encryptor.

At first, it might seem that our notion of public auditability can be achieved
by the above schemes. However, even though there exist similarities specifically
between our constructions and the ones of [9, 10], public auditability aims to
protect the auditor who lacks knowledge of skf and knows instead only pkf . In
that sense, our approach can be broadly viewed as a public-key analog of the
notions of verifiability and consistency. Thus, not only our constructions require
additional techniques for auditability, but PAFE requires a modified security
definition, expanded to capture additional adversarial cases, as discussed above.

Koutsos et al. [27] proposed a construction of a privacy-preserving data mar-
ketplace that uses FE to protect the privacy of the raw data. To the best of
our knowledge, this is the only work that considers a similarly augmented set-
ting for FE with auditability and provides a solution without relying on trusted
communication between the encryptor and the auditor. Similarly to our work,
they utilize a public equivalent of skf to ensure the legitimacy of the brokered
results against an untrusted auditor (but not untrusted authority/encryptor or
any combination between them). Moreover, they only consider “passive” attacks
from parties that observe ciphertexts but without decryption capabilities. Fi-
nally, their scheme builds on the MCFE scheme of [20] which supports only
inner-products functionalities.

Barbosa et al. [12] were concerned with a somewhat similar problem to ours.
In that work the authors proposed a cryptographic primitive called Delegatable
Homomorphic Encryption (DHE). With DHE schemes a weak client is convinced
that the decryption (which was performed by a potentially malicious cloud ser-
vice provider) was performed correctly. The authors assume a trusted communi-
cation channel between the encryptor and the auditor, so that the latter could
be convinced about the legitimacy of the results received from decryptors. How-
ever, this is a strong assumption and an unrealistic one as well, as the content
provider could go offline after the uploading of its data onto the cloud service
provider. Contrary to our work, the authors of [12] do not consider any possi-
ble corruptions from the encryptor or the authority and rely on both FE and
fully-homomorphic encryption [22] schemes.

3 Preliminaries

Below we present the necessary cryptographic background for our work.
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WI
NIWI
β (1λ,A) (for relation R)

(x,w1, w2, st)← A1(1
λ)

π ← NIWI.Prove(1λ, x, wβ)
α← A2(π, st)
Output: α ∧ (x,w1) ∈ R ∧ (x,w2) ∈ R

Fig. 1. Witness-indistinguishability game of a NIWI proof system.

General Notation.We denote by F = {Fλ}λ∈N a family of sets Fλ of functions
f : Xλ → Yλ. We call Fλ a functionality class such that all functions f ∈ Fλ have
the same domain and the same range. A function negl(λ): N← R+ is negligible
if for every positive polynomial p(λ) there exists a λ0 ∈ N, such that for all
λ > λ0 : ϵ(λ) < 1/p(λ). We denote [n] = {1, · · · , n} for n ∈ N⋆. For algorithms
A and B, we write AB(·)(x) to denote that A gets x as an input and has oracle
access to B, that is, the response for an oracle query q is B(q). Oracles increment
a counter every time they receive a query and associate the input-output pairs
with their counter, so they can answer repeated queries consistently. Last, we
denote by ←$ D sampling uniformly at random from domain D.

NIWI Proof Systems. A non-interactive witness-indistinguishable proof sys-
tem (NIWI) allows a prover to convince a verifier about the validity of the
statement in a way that guarantees that “cheating” provers cannot succeed in
this. On the other hand, witness indistinguishability means that no verifier in-
teracting with an honest prover can distinguish which of two witnesses w1, w2

was used by the latter (assuming such witnesses exist for the statement).

Definition 1. (Non-Interactive Witness-Indistinguishable Proofs [9]) Let R be
an NP relation and consider the language L = {x | ∃ w with (x,w) ∈ R}. A
non-interactive witness-indistinguishable proof (NIWI) for the relation R is a
tuple of PPT algorithms NIWI = (NIWI.Prove, NIWI.Verify):
NIWI.Prove(1λ, x, w): Takes as input the unary representation of the security pa-
rameter λ, a statement x and a witness w, and outputs a proof π.
NIWI.Verify(1λ,x, π): Takes as input the unary representation of the security pa-
rameter λ, a statement x, and a proof π, and outputs 0 or 1.

A NIWI is complete, if for all statement-witness pairs in the relation (x,w) ∈ R,
it holds that: Pr[NIWI.Verify(1λ, x,NIWI.Prove(1λ, x, w)) = 1] = 1. Besides, a
NIWI fulfills the properties of soundness and witness-indistinguishability.

(NIWI Soundness). We define the advantage of an adversary A as:

AdvSound
NIWI,A(λ) := Pr[(x,w)← A(1λ) : NIWI.Verify(x, π) = 1 ∧ x /∈ L]

A NIWI is perfectly sound if AdvSound
NIWI,A(λ) = 0 for all algorithms A, and com-

putationally sound, if AdvSound
NIWI,A(λ) ≤ negl(λ) for all PPT algorithms A.

(Witness-Indistinguishability). For β ∈ {0, 1}, we define the experiment
WINIWI

β (1λ,A) in Figure 1. The advantage AdvWI
NIWI

(

A(1λ)
)

of an adversary
A = (A1,A2) is:
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|Pr[WINIWI
0 (1λ,A) = 1]− Pr[WINIWI

1 (1λ,A) = 1]|

A NIWI is witness-indistinguishable, if AdvWI
NIWI

(

A(1λ)
)

= 0 for all algorithms
A = (A1,A2), and computationally witness-indistinguishable, if the advantage
AdvWI

NIWI

(

A(1λ)
)

≤ negl(λ) for all PPT algorithms A = (A1,A2). In our PAFE
schemes, we use NIWIs with perfect soundness and computational witness in-
distinguishability, such as the ones proposed in [14]. We also note that for the
configurations with trusted PAFE authority (Section 5.1), our NIWIs can be
readily replaced with zero-knowledge proof systems that provide a stronger fla-
vor of witness privacy.

Commitments. This primitive allows a party to first commit to a message in
a way that reveals nothing about it, and later open it in way that guarantees it
cannot “equivocate” for multiple openings. We rely on perfectly binding, com-
putationally hiding commitments (e.g., built from one-way permutations [14]).

Definition 2 (Commitment Schemes). A commitment scheme consists of a
pair of PPT algorithms (Com.Setup,Com.Commit). The Com.Setup algorithm pp
← Com.Setup(1λ) generates public parameters pp for the scheme, for security
parameter λ. The commitment algorithm defines a function Mpp × Rpp → Cpp,
for message space Mpp, for randomness space Rpp, and for commitment space
Cpp, determined by pp. It takes as input a message x and randomness r and
outputs c← Com.Commitpp(x; r). A perfectly binding and computationally hiding
commitment scheme must satisfy the following properties:

• Perfectly Binding: Two different strings cannot have the same commitment.
More formally, ∀ x0 ̸= x1, r0, r1,Com.Commit(x0; r0) ̸= Com.Commit(x1; r1).

• Computationally Hiding: For all strings x0 and x1 (of the same length),
for all non-uniform PPT adversaries A, we have that AdvCom−Hiding(A) is
the advantage defined as:
|Pr[A(Com.Commit(x0; r0))=1]− Pr[A(Com.Commit(x1; r1))=1]| < negl(λ)

3.1 Functional encryption

A functional encryption scheme [8,16] can be used to encrypt a message, akin to
“standard” encryption. However, using special function-specific decryption keys,
it also allows a decryptor to learn specific function outputs of the message, but
nothing else. The following definition is based on [16,20].

Definition 3 (Functional Encryption). Let F = {Fλ}λ∈N be a family of
sets Fλ of functions f : Xλ → Yλ. An FE scheme for the functionality class Fλ

is a tuple of four algorithms FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec).

– FE.Setup(1λ): Takes as input the security parameter λ as 1λ and outputs a
master public key mpk, a master secret key msk, and an encryption key ek.

– FE.KeyGen(mpk,msk,f): Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key skf .

9



– FE.Enc(ek,x): Takes as input an encryption key ek and a string x ∈ Xλ, and
outputs a ciphertext ct.

– FE.Dec(mpk,f ,skf ,ct): Takes as input a master public key mpk, a function
f ∈ Fλ, a functional secret key skf , and a ciphertext ct. It outputs a function
value y∈ Yλ or ⊥, indicating an invalid ciphertext.

Correctness. An FE scheme is correct, if ∀λ ∈ N, ∀f ∈ Fλ, ∃x ∈ Xλ s.t.:

Pr





(msk,mpk,ek)← FE.Setup(1λ)
FE.Dec(mpk,f, skf ,ct) = f(x) skf ← FE.KeyGen(mpk,msk, f)

ct← FE.Enc(ek,x)



 > 1−negl(λ)

The security of FE is captured by the following indistinguishability game. At a
high level, the adversary has access to a “left-right” encryption oracle and a key
generation for functions of its choice. Importantly, the game detects whether the
adversary ever submit an encryption query for a pair of messages with different
output for some of the queried functionalities (trivially breaking the game).

Definition 4 (IND Security for FE). Let us consider an FE scheme. No
PPT adversary A should be able to win the following game against a challenger C:

• Initialization: C runs the setup algorithm (mpk,msk,ek) ←FE.Setup(1λ) and
chooses a random bit b←$ {0, 1}. It provides the master public key mpk to A.

• Encryption queries QEnc(x0,x1): A has unlimited adaptive access to a Left-or-
Right encryption oracle and receives ciphertext ct, generated by FE.Enc(ek,xb).

• Functional key queries QKeyGen(f): A has unlimited and adaptive oracle
access to the FE.KeyGen(mpk,msk,f) algorithm for any input function f of its
choice. It is given back the functional secret key skf .

• Finalize: A provides its guess b′ on the bit b and this procedure outputs the
result β of the security game, according to the analysis given below.

The game output β depends on the following conditions. If QKeyGen queries
have been issued for some function f and there exists a pair of values ( x0,x1)
queried to QEnc, such that f( x0) ̸= f( x1), we set β ←$ {0, 1}. In any aother
case we set the output to β ← b′.
A wins in the game if β = b and we remark that a naive adversary, by sampling
randomly β has probability of winning equal to 1

2 . We denote the advantage that
A has of winning as AdvIND(A) and we say this FE is IND-secure if for any
PPT adversary A, AdvIND(A) = |Pr[β = 1|b = 1]−Pr[β = 1|b = 0]| ≤ negl(λ).

The game above captures the adaptive security of FE. There exists also a
selective variant, where the adversary is forced to send all its encryption queries
QEnc in one shot, before issuing any other type of query.

3.2 Multi Input Functional Encryption

We alter the original definition of MIFE scheme in [23] for consistency purposes.
Specifically, we let MIFE.Setup(·) output additionally a master public key mpk
and we augment all remaining algorithms’ inputs with mpk.
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Experiment IND
MIFE

A (1λ)

(n, st0) ← A0(1
λ)

{eki}i∈[n] ←MIFE.Setup(1λ, n)

(X⃗0, X⃗1, st1)← A
MIFE.KeyGen(mpk,msk,·)
1 (st0, {eki}i∈[n]), X⃗

ℓ = {xℓ
i,j}i∈[n],j∈[q]

b← {0, 1} CTi,j ← MIFE.Enc(mpk, ek, X⃗)

Fig. 2. MIFE security game.

Definition 5 (Multi-Input Functional Encryption). Let F = {Fλ}λ∈N be
a family of sets Fλ of functions f : Xλ → Yλ. A multi-input functional encryp-
tion scheme (MIFE) for the functionality class Fλ is a tuple of four algorithms
MIFE= (MIFE.Setup, MIFE.KeyGen, MIFE.Enc, MIFE.Dec).

MIFE.Setup(1λ, n): Takes as input a unary representation of the security param-
eter λ and an integer n, and outputs a master public key mpk, a master secret
key msk, and a set of n encryption keys {eki}i∈[n].
MIFE.KeyGen(mpk,msk,f): Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key skf .
MIFE.Enc(mpk,eki,x): Takes as input a master public key mpk, an encryption
key eki and a string x ∈ Xλ, and outputs a ciphertext cti or err (denoting an
encryption error).
MIFE.Dec(mpk,f ,skf ,{cti}i∈[n]): Takes as input a master publi c key pkf , a func-
tion f , a functional key skf , and a set of ciphertexts {cti}i∈[n] and outputs a
function value y ∈ Yλ or ⊥, which indicates an invalid ciphertext.

Security of MIFE schemes was defined in [23], parameterized by the number
of encryption keys known to the adversary, and the number of challenge mes-
sages per encryption key. Similarly to [25], our construction is uplifted of any
conditions regarding these two parameters.

Definition 6 (Indistinguishability-based security [25]). We say that a
MIFE scheme for n−ary functions F is fully IND-secure if for every adversary
A, the advantage of A defined as: Advsec−MIFE

(

A(1λ)
)

= |Pr[INDMIFE
A ]−1/2| <

negl(λ), where the game INDMIFE
A (1λ) is depicted in Figure 2.

4 Publicly Auditable Functional Encryption

In this section, we present our definition of publicly auditable functional en-
cryption, its security game, and different flavors of pubic auditability, each one
corresponding to a different corruption set among the encryptor, authority, and
decryptor entities.

Below we show the algorithms of a PAFE scheme. The main differences com-
pared to FE are: (i) the addition of a functional public key pkf for each func-
tion, (ii) a new algorithm ProveDec executed by the decryptor to convince a
third party (auditor) about the decryption correctness, and (iii) a new algo-
rithm PAFE.VerifyDec that takes pkf (but not skf ) and a proof of decryption
correctness for the same function f as the key and accepts or rejects an output.
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Definition 7 (Publicly Auditable FE). Let F = {Fλ}λ∈N be a family of sets
Fλ of functions f : Xλ → Yλ. A publicly auditable functional encryption scheme
for the functionality class Fλ is a tuple of six algorithms PAFE = (PAFE.Setup,
PAFE.KeyGen, PAFE.Enc, PAFE.Dec, PAFE.ProveDec, PAFE.VerifyDec).

– PAFE.Setup(1λ): Takes as input a unary representation of the security param-
eter λ and outputs a master public key mpk, a master secret key msk, and an
encryption key ek.

– PAFE.KeyGen(mpk,msk,f): Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key skf
and a functional pubic key pkf .

– PAFE.Enc(mpk,ek,x): Takes as input an encryption key ek and a string x ∈ Xλ,
and outputs a ciphertext ct.

– PAFE.Dec(mpk,f ,skf ,ct): Takes as input a master public key mpk, a function
f ∈ Fλ, a functional key skf , and a ciphertext ct. It outputs a function value
y ∈ Yλ or ⊥, which indicates an invalid ciphertext.

– PAFE.ProveDec(mpk,f ,skf ,pkf ,ct,y): Takes as input a master public key mpk,
a function f ∈ Fλ, a functional secret key skf , a functional public key pkf , a
ciphertext ct, and a value y and outputs a proof πd.

– PAFE.VerifyDec(mpk,f ,pkf ,ct,y,π): Takes as input a master public key mpk, a
function f ∈ Fλ, a functional public key pkf , a ciphertext ct, a value y, and
a proof π and outputs 1 if y = PAFE.Dec(mpk,f ,skf ,ct), and 0 otherwise.

PAFE satisfies the correctness of FE schemes as per Definition 3 and additionally
satisfies the following notion of auditable correctness.

Auditable correctness. A scheme PAFE has auditable correctness, if ∀ λ ∈ N,
∀ f ∈ Fλ, ∃ x ∈ Xλ the following probability is negligible in λ.

Pr













(msk,mpk,ek)← PAFE.Setup(1λ)
PAFE.Dec(mpk,f, skf ,ct) = f(x) ct← PAFE.Enc(ek,x)
1← PAFE.VerifyDec(mpk,f , (skf ,pkf )← KeyGen(mpk,msk, f)

pkf ,ct,f(x),πd) πd ← PAFE.ProveDec(mpk,f ,skf ,pkf ,
ct,f(x))













The security of a PAFE scheme is captured by an indistinguishability game
that is an “extended” version of the one from Definition 4 to allow also for oracle
access to functional public keys and decryptions.

Definition 8 (Security for PAFE). Consider the following game between
PPT adversary A and challenger C:

• Initialization: C runs the setup algorithm (mpk,msk,ek)←PAFE.Setup(1λ) and
chooses a random bit b←$ {0, 1}. It provides the master public key mpk to A.
• Encryption queries: QEnc(x0,x1): A has unlimited adaptive access to a Left-or-
Right encryption oracle and receives ciphertext ctb ← PAFE.Enc(mpk,ek,xb).
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PA-UD(1λ,A) and PA-UAD(1λ,A)

(mpk,msk,ek) ← PAFE.Setup(1λ)

(mpk⋆,ek⋆) ← A(1λ)

(y⋆,π⋆, i, j) ← APAFE.KeyGen(mpk,msk, ·),PAFE.Enc(mpk,ek,·)(1λ,mpk)
▷ i corresponds to the i-th PAFE.KeyGen oracle query and

(fi,skf,i,pkf,i) is its associated information.
▷ j corresponds to the j-th PAFE.Enc oracle query and

(xj ,ctj) is its associated information.
If (y⋆ ̸= fi(xj)∧PAFE.VerifyDec(mpk,fi, pkf,i,ctj ,y

⋆, π⋆) = 1)
If (y⋆ ̸= f⋆(xj) ∧ PAFE.VerifyDec(mpk⋆,f⋆, pk⋆f ,ctj ,y

⋆,π⋆) = 1)
Output 1

Else output 0

Fig. 3. Public Auditability with Untrusted (Authority and) Decryptor

• Functional key queries QSKeyGen(f): A has unlimited and adaptive oracle
access to the PAFE.KeyGen(mpk,msk,f) algorithm for input functions f of its
choice. It receives the functional secret and public keys (skf ,pkf ).
• Functional public key queries QPKeyGen(f): A has unlimited and adaptive
oracle access to the PAFE.KeyGen(mpk,msk,f) algorithm for any input func-
tion f of its choice. It is given back a functional public key pkf .
• Decryption queries QDec(ctb,f): A has unlimited adaptive access to an or-
acle for the PAFE.Dec(mpk,f ,skf ,ct) algorithm, for any input ciphertext ct
and any function f of its choice. If no Q(S/P)KeyGen query for f has been
issued, C outputs ⊥. Otherwise, A receives the function output f( xb), where
ctb=PAFE.Enc(mpk,ek,xb), alongside a proof π about its correctness.
• Finalize: A provides its guess b′ on the bit b and this procedure outputs the
result β of the security game, according to the analysis given below.

A wins in the game if β = b and we remark that a naive adversary, by sam-
pling randomly β has probability of winning equal to 1

2 . In case A has either
issued (i) QSKeyGen queries for some function f and also QEnc queries for
a pair of values, (x0,x1), such that f(x0) ̸= f(x1), or (ii) QDec query for ci-
phertext ctb and function f and has issued a ctb ← QEnc(x0,x1) query, where
ct0=PAFE.Enc(mpk,ek,x0) and ct1=PAFE.Enc(mpk,ek,x1), such that f(x0) ̸= f(x1),
then β ←$ {0, 1}. Otherwise β = b′. We denote the advantage that A has of
winning as Advsec−PAFE(A) and we say this PAFE is secure if for any PPT
adversary A, Advsec−PAFE(A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| ≤ negl.

As with FE, we can also have a selective version of the above game where the
adversary declares all its encryption queries prior to other oracle accesses.

4.1 Public auditability definitions

There exist totally four different cases of public auditability, depending on which
of the involved parties are adversarial and possibly colluding to trick the auditor
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PA-UED(1λ,A) and PA-UEAD(1λ,A)

(mpk,msk,ek) ← PAFE.Setup(1λ)

(mpk⋆,ct⋆,{y⋆i ,π
⋆
i ,f

⋆
i ,pk

⋆
f,i}i∈[n]) ← A(1

λ)

(y⋆,π⋆, ct⋆, i) ← APAFE.KeyGen(mpk,msk, ·)(1λ,mpk, ek)
▷ i corresponds to the i-th PAFE.KeyGen oracle query and
{fi,skf,i,pkf,i} is its associated information.

If (∄ x ∈ Xλ : y⋆ = fi(x) ∧ PAFE.VerifyDec(mpk,fi, pkf,i,ct
⋆,y⋆)=1)

If
(

∄ x′ ∈ Xλ : ∀i ∈ [n] y⋆i = fi(x
′) ∧ VerifyDec(mpk⋆,ct⋆,f⋆

i , pk
⋆
f,i,y

⋆
i , π

⋆
i )=1

)

Output 1
Else output 0

Fig. 4. Public Auditability with Untrusted Encryptor, (Authority, and) Decryptor.

into accepting an incorrect functional decryption result (see Table 1). In partic-
ular we consider the cases where: (i) only the decryptor is corrupted (PA-UD),
(ii) both the encryptor and the decryptor are corrupted (PA-UED), (iii) both
the key-generating authority and the decryptor are corrupted (PA-UAD), and
(iv) the encryptor, the key-generating authority, and the decryptor are corrupted
(PA-UEAD). Each corruption set results in a different definition of public au-
ditability, defined below. At a high level, auditability ensures that, even though
auditors have no decryption capabilities of their own, there is still a guarantee
of (at least some level of) consistency between what they receive and what the
decryptor computed. We note that this renders pointless to define this property
for cases where the decryptor is honest (or the auditor itself is dishonest).

We provide game-based definition of public auditability for all four corruption
cases. The two games for honest (resp. corrupted) authority are very similar,
hence we depict them together in Figure 3 (resp. Figure 4). The lines shown
in red correspond to the games modified for corrupted authorities, each time
replacing the preceding line in black and we denote by the superscript ⋆ all
adversary-provided elements.

Definition 9. [Public Auditability] Let SET ∈ {UD,UAD,UED,UEAD} and con-
sider the experiments PA-UD, PA-UAD from Figure 3 and PA-UED, PA-UEAD
from Figure 4. A PAFE for F is SET-publicly auditable against the correspond-
ing set of corruptions if ∀λ ∈ N, ∀x ∈ Xλ, ∀PPT adversaries A, it holds that
Pr[PA-SET(1λ,A) = 1] < negl(λ).

Based on the above definition we make the following observations. First, when
the encryptor is honest, the auditor should be guaranteed to receive the exact
function output corresponding to the function fi of its choice and the actual
plaintext x used by the honest encryptor. On the contrary, for cases PA-UED
and PA-UEAD where the encryptor is not trusted, there is no guarantee that
the ciphertexts were honestly computed. In these settings, the best the auditor
can hope for is a notion of “consistency.” I.e., there must exist some common
plaintext element within the domain of fi (or, in the case of multiple functions,
the non-empty intersection of their respective domains) that evaluates to the
output (or outputs) received and verified by the auditor.
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Second, in the PA-UD experiment the condition y⋆ ̸= fi(xj) could be equiva-
lently written as (y⋆ ̸= PAFE.Dec(mpk,fi,skf,i,ctj). However, this is not the case
for PA-UAD. In the former case the encryptor chooses an x ∈ Xλ and encrypts
honestly. In the latter case the encryptor may still intend to encrypt a valid
plaintext x. However, the adversary (colluding authority and decryptor) may
manipulate the generated keys so that even an honestly generated ciphertext is
not decryptable into the image space of fi.

5 PAFE Constructions from FE

Below we provide constructions for secure and publicly auditable PAFE schemes
from secure FE schemes and other cryptographic primitives i.e., commitment
schemes and NIWI proof systems. As in Section 4, we “group” our constructions
together. However, now we do so based on whether the key-generating authority
is trusted or not. Lines in blue in all figures of this section, depict additional
steps/parts for when the encryptor is untrusted. Both auditable and regular
correctness, for all our constructions, follow directly from the correctness of
the underlying FE scheme, the correctness of the commitment scheme and the
completeness of the employed NIWI proof systems. For each construction we
provide proofs about its security and public auditability flavor. For readability
reasons our proofs are delegated to the Appendix.

5.1 Auditability with trusted authority

PA-UD auditability. For this construction (Figure 5) we employ an FE scheme,
a perfectly binding and computationally hiding commitment scheme, and a per-
fectly sound and computationally witness-indistinguishable NIWI proof system.

First, our functional public keys pkf are computed as commitments of the
corresponding skf . Second, PAFE.ProveDec produces a NIWI proof for the cor-
rectness of the decryption. The relation RUD is shown in Figure 6. Symbol ⊤,
included in this relation, is a fixed value from the supported domain of the
commitment scheme Com, lying outside the domain of possible msk values that
can be produced from FE.Setup (assuming, without loss of generality, that the
domain of Com is a superset of the latter). This turns NIWI proofs into “OR”-
proofs, allowing us to formally prove the IND-security of our scheme even in the
presence of arbitrary oracle queries, without compromising auditability—since
PAFE.Setup, which is executed by the trusted authority, will never produce ⊤ as
the msk. Below, we state Theorem 1 regarding the security and PA-UD public
auditability of our construction, whose full proof we include in Appendix A.

Theorem 1. Let FE be an IND-secure FE for a family of functions F . Let
Com be a perfectly binding and computationally hiding commitment scheme and
NIWId a perfectly sound and computationally witness-indistinguishable NIWI for
relation RUD (Figure 6). Then, the PAFE scheme of Figure 5 for F is secure as
per Definition 8 and UD-publicly auditable as per Definition 9.
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PAFE.Setup(1λ):

s1, s2, ud, ue ←$ {0, 1}λ

pp ← Com.Setup(1λ;s1)

(msk,mpk,ek) ← FE.Setup(1λ;s2)
cd ← Com.Commit(msk;ud)
ce ← Com.Commit(msk;ue)
Return (pp,mpk,msk,ek,cd,ce)

PAFE.KeyGen(mpk,msk,f):

skf ←FE.KeyGen(mpk,msk,f)

rf ←$ {0, 1}λ

pkf ←Com.Commit(skf ; rf )
Return (skf ,rf ,pkf )

PAFE.Enc(mpk,msk,ek,x,ce,ue):

ct ← FE.Enc(ek,x;se), se ←$ {0, 1}λ

πe ←NIWIe.Prove(mpk,msk,ek,x,ct,ce,ue,se)
Return (ct,πe)

PAFE.Dec(mpk,f ,skf ,ct):

y ← FE.Dec(mpk,f ,skf ,ct)
Return y

πd ←NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud)
Return πd

PAFE.VerifyDec(mpk,f ,pkf ,ct,y,ce,cd,πe,πd):

b1 ←NIWId.Verify(mpk,f ,pkf ,ct,y,cd,πd)
b2 ←NIWIe.Verify(mpk,ct,ce,πe)
Return b1∧b2

Fig. 5. PAFE construction with untrusted (encryptor and) decryptor.

Relation RUED,d:
Statement: zd = (mpk,f ,pkf ,ct,y,cd)
Witness: wd = (skf ,rf ,⊤,ud)
RUED,d(zd, wd) = 1 iff:
(

pkf ← Com.Commit(skf ; rf )
∧ y ← FE.Dec(mpk,f ,skf ,ct)

)

∨ cd ← Com.Commit(⊤;ud)

Relation RUED,e:
Statement: ze = (mpk,ct,ce)
Witness: we = (ek,x,se,⊤,ue)
RUED,e(ze, we) = 1 iff:
ct=FE.Enc(mpk,ek,x; se)
∨ce←Com.Commit(⊤;ue)

Fig. 6. Relations used in the constructions of Figure 5.

PA-UED auditability. To achieve public auditability against untrusted en-
cryptor and decryptor we use the our PA-UD construction as a baseline, but
additionally we require the encryptor to provide a NIWI proof for the validity
of the ciphertext computation. The auditor now has to perform two NIWI veri-
fications while executing the PAFE.VerifyDec algorithm. If both succeed, then it
is convinced about the legitimacy of the received result. The additional elements
this construction has with respect to the the PA-UD one are highlighted in blue
in Figure 5 and the two relations RUED,e and RUED,d that need to be supported
by the NIWI schemes are defined in Figure 6. Below we state Theorem 2 and we
provide its proof in Appendix B.

Theorem 2. Let FE be an IND-secure FE scheme for a family of functions F .
Let Com be a perfectly binding and computationally hiding commitment scheme
and NIWId,NIWIe perfectly sound and computationally witness indistinguish-
able NIWI proof systems for relations RUED,d,RUED,e (Figure 6). Then, the
PAFE scheme of Figure 5 for F is adaptively secure under Definition 8 and pub-
licly auditable against untrusted encryptors and decryptors as per Definition 9.

16



5.2 Auditability with untrusted authority

Contrary to our previous constructions, since the authority can no longer be
trusted to honestly run the setup and key-generation algorithms, our “OR”
proof strategy no longer works. Instead, we adapt an approach from [10] based
on replicating the FE computations, while accepting the majority of the func-
tional decryptions as the correct output. In particular, our constructions use
four instances of an IND-secure FE scheme, again combined with a perfectly
binding and computationally hiding commitment scheme, and perfectly sound
and computationally witness-indistinguishable NIWIs.

PA-UAD. To achieve public auditability in the presence of untrusted author-
ity and decryptor, we augment the output of the PAFE.KeyGen algorithm to
include a NIWI proof that guarantees at least three-out-of-four FE.Setup and
FE.KeyGen instances have been generated honestly (Figure 7). Additionally, the
output of the PAFE.ProveDec algorithm now states that at least two-out-of-
the-four decryptions have been executed honestly. The corresponding relations
RUAD,f ,RUAD,d that need to be supported by the NIWI schemes, are defined in
Figure 8. What is more, PAFE.Dec now returns the majority of the functional
decryptions—in case majority is not reached, PAFE.Dec returns ⊥.

Auditability now is based on the fact that: (i) the encryptor is assumed to
be trusted, meaning that it always encrypts the same message (regardless of
how the encryption keys were originally generated), (ii) it is always guaranteed
that at least one of the four FE instances is executed honestly with respect to
key-generation, encryption, and decryption. To justify this in more detail, note
that since three-out-of-four FE keys are computed correctly and two-out-of-four
decryptions are performed correctly (and given the encryptor uses the same
plaintext for all four ciphertexts), there is no way the sets of FE instances with
correct keys and those with correct decryptions are disjoint.

More technically, this translates into the following: Suppose the decryptor
provides the auditor with a fabricated y⋆ that does not correspond to the output
of the FE.Dec(·) for any of the correctly computed (mpk,skf ). This would result
in the decryptor breaking the correctness of the underlying FE scheme as all
ciphertexts are also correctly computed. Hence, assuming the FE scheme is per-
fectly correct the only output y for which the auditor who runs PAFE.VerifyDec
will accept is the correct functional output for the x encrypted by the encryp-
tor. We now state the following theorem and we offload the formal proof to
Appendix C.

Theorem 3. Let FE be a secure FE scheme for a family of functions F . Let
Com be a perfectly binding and computationally hiding commitment scheme,
NIWIf and NIWId perfectly sound and computationally witness-indistinguishable
NIWIs for RUAD,d and RUAD,d respectively (Figure 8). Then, PAFE in Figure 7
is adaptively secure under Definition 8 and publicly auditable against untrusted
authority and decryptor as per Definition 9.

PA-UEAD. Finally we focus on the “extreme” case where all protocol par-
ticipants (authority, encryptor, and decryptor) collaborate to cheat the auditor
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PAFE.Setup(1λ):
For i ∈ [4]:
(mski,mpki,eki) ← FE.Setup(1λ;si)
si ←$ {0, 1}λ

cf= Com.Commit(14·len;uf ), uf ←$ {0, 1}λ

ce= Com.Commit(1len;ue) ue ←$ {0, 1}λ

cd= Com.Commit(1len;ud) ud ←$ {0, 1}λ

msk = {mski}i∈[4]

mpk = ({mpki}i∈[4],cf ,ce,cd)
ek = {eki}i∈[4]

Return (mpk,msk,ek)

PAFE.KeyGen(mpk,msk,f):
For i ∈ [4]:
skf,i←FE.KeyGen(mpki,mski,f ; sk,i)
sk,i ←$ {0, 1}λ

pkf,i ←Com.Commit(skf,i; rf,i)
rf,i ←$ {0, 1}λ

sk = {sk,i}i∈[4]

rf = {rf,i}i∈[4]

skf = {(skf,i, rf,i, sk,i)}i∈[4]

pkf = {pkf,i}i∈[4]

πf ← NIWIf .Prove(mpk,msk,f ,skf ,pkf ,sk,rf )
pk′f = (pkf ,πf )
Return (skf ,pk

′
f )

PAFE.Enc(mpk,ek,x):
For i ∈ [4]:
cti ←FE.Enc(eki,x;se,i)
se,i ←$ {0, 1}λ

se = {se,i}i∈[4]

πe ←NIWIe.Prove(mpk,ek,x,ct,se)
Return ct = ({cti}i∈[4],πe)

PAFE.Dec(mpk,f ,skf ,ct):
For i ∈ [4]:
yi ← FE.Dec(mpki,f ,skf,i,cti)
If ∃j1 ̸= j2 ̸= j3 ∈ [4]: yj1 = yj2 = yj3

Return y1
Return ⊥

PAFE.ProveDec(mpk,f ,skf ,pkf ,ct,y):
πd ←NIWId.Prove(f ,y,mpk,skf ,pkf ,ct)
Return πd

PAFE.VerifyDec(mpk,pk′f ,ct,πd,y,f):

Parse pk′f = (pkf , πf )
b1 ← NIWIf .Verify(mpk, pk′f , f)
b2 ← NIWIe.Verify(mpk,ct)
b3 ← NIWId.Verify(mpk,pkf ,ct,y,πd,f)
Return b1∧b2 ∧ b3

Fig. 7. PAFE construction with untrusted encryptor, authority, and decryptor.

into accepting an incorrect functional output. To achieve public auditability in
this case, we use the PA-UAD construction as a baseline but we augment the
output of the encryption to include a NIWI proof as well, following a similar
approach as the one we adopted to go from PA-UD to PA-UED. However, given
the multiple FE instances we need to further modify our technique (Figure 7).

Overall, we use NIWIs to prove that at least three-out-of-the-four execu-
tions of the FE.Setup and FE.KeyGen algorithms have been executed honestly.
Likewise, for at least two-out-of-the-four executions of the FE.Enc and at least
three-out-of-the four executions ofFE.Dec algorithms. The above are depicted in
relations RUEAD,f , RUEAD,e and RUEAD,d in Figure 8. Unlike in the PA-UAD
case, here we additionally consider the encryptor to be untrusted therefore we
cannot use the same reasoning to guarantee that at least for one FE instance
all the algorithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec), have been correctly ex-
ecuted. Instead, we reason about the properties of our construction as follows:

First, RUEAD,f and RUEAD,d both require that pkf is computed honestly,
for their respective indices, which “ties them together”. On the other hand, the
encryption algorithm is not tied to the pkf . However, having a three-out-of-
four threshold for the NIWI proof regarding functions key generation suffices
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Relation RUAD,f :

Statement: zf=({mpki,fi,pkf,i,cti}i∈[4]); Witness: wf=({mski,skf,i,rf,i,rki
,si}i∈[4])

RUAD,f (zf , wf )=1 iff either of the following conditions hold:

(1) - ∀j ∈ [4] : pkf,j ← Com(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)
∧ skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rkj

)
(2) - ∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1: pkf,j ← Com.Commit(skf,j ; rf,j)

∧ (mpkj ,mskj) ← FE.Setup(1λ; sj) ∧ skf,j ← FE.KeyGen(mpkj ,mskj ,f ;rkj
)

Relation RUAD,d:

Statement: zd=({mpki,fi,pkf,i,cti}i∈[4],y,πd) Witness: wd=({skf,i,rf,i}i∈[4])
RUAD,d(zd, wd)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] : pkfk ← Com(skfk ; rfk ) ∧ y ← FE.Dec(mpkk,f ,skfk ,ctk)
(2) ∃A2 ⊂ [4], with |A2| = 2, s.t. ∀k ∈ A2: pkfk ← Com(skfk ; rfk )

∧ y ← FE.Dec(mpkk,f ,skfk ,ctk) ∧ cf ←Com({skf,i}i∈[4];uf ) ∧ cd ←Com(0len;ud)

Relation RUEAD,f :

Statement: zf={mpki,fi,pkf,i,cti}i∈[4],cd, cf );
Witness:wf=({mski,skf,i,rf,i, si}i∈[4], y, ud, uf )
RUEAD,f (zf , wf )=1 iff either of the following conditions hold:

(1) -
(

∀j ∈ [4] : pkf,j ← Com.Commit(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)

∧ skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rf,j)
)

∧ cf ←Com.Commit(14·len;uf )
(2) -

(

∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1:

pkf,j ← Com.Commit(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)

∧ skf,j ← FE.KeyGen(mpkj ,mskj ,f ;rf,j)
)

∧ cf ←Com.Commit(04·λ;uf )
∧ ∃ y ∈ Xλ such that ∀ i ∈ [4]: y ← FE.Dec(mpki,fi,skf,i,cti)

Relation RUEAD,e:

Statement: ze=({mpki, cti}i∈[4],y,ce); Witness: we=({eki,xi,se,i}i∈[4], ue)
RUEAD,e(ze, we)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] :

ctj = FE.Enc({ekj ,mpkj},x;se,j) ∧ cf ←Com.Commit(14·len;uf )

∧ ce ← Com.Commit(1len;ue)
(2) ∃A2 ⊂ [4], with |A2| = 2, s.t. ∀k ∈ A2:

ctk = FE.Enc({ekk,mpkk},x;se,k) ∧ ce ←Com.Commit(0len;ue)

Relation RUEAD,d:

Statement: zd=({mpki,fi,pkf,i,cti}i∈[4],y,πd); Witness: wd=({skf,i,rf,i}i∈[4])
RUEAD,d(zd, wd)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] :

pkfk ← Com.Commit(skfk ; rfk ) ∧ y ← FE.Dec(mpkk,fk,skfk ,ctk)

∧ ce ←Com.Commit(1len;uf )
(2) ∃A3 ⊂ [4], with |A3| = 3, s.t. ∀k ∈ A3:

pkfk ← Com.Commit(skfk ; rfk ) ∧ y ← FE.Dec(mpkk,fk,skfk ,ctk)

∧ cd ←Com.Commit(0len;ud)

Fig. 8. Relations used in the constructions for secure PA-UAD and PA-UEAD PAFE.
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to guarantee majority in PAFE.Dec. Finally, note that RUEAD,f enforces that
all four decryptions return the same result which guarantees that the auditor
receives a valid function output. Recall that, since the encryptor is not assumed
honest in this setting, we cannot guarantee that the output y is the correct
functional output for the plaintext x used by for all four ciphertexts; just a
“consistent” explanation for all four of them (see Section 4.1).

One downside of our final construction is that it only satisfies the selective
version of Definition 8, where the adversary issues all encryption queries before
any other oracle access (but after receiving the output of PAFE.Setup). To see
why this is necessary, observe that condition (2) of relation RUEAD,f requires
knowledge of all ciphertexts cti for the NIWI proof generation. Similarly to
before, we state the following theorem and delegate the proof for our PA-UEAD
scheme to Appendix D.

Theorem 4. Let FE be an IND-secure FE scheme for a family of functions F .
Let Com be a perfectly binding and computationally hiding commitment scheme,
NIWIf , NIWIe, NIWId computationally witness-indistinguishable and perfectly
sound NIWIs for relations RUEAD,e, RUEAD,f , and RUEAD,d shown in Figure 8.
Then, PAFE in Figure 7 is selectively secure under Definition 8 and publicly au-
ditable against untrusted encryptor, authority, and decryptor as per Definition 9.

6 Relations Among PA definitions

Here, we investigate any implications between the public auditability definitions.
The strongest out of the four is the one where all entities are untrusted, whereas
the weakest one is the one where just the decryptor is untrusted. A natural
assumption would be that the strongest implies any weaker definition. However,
this is not the case and below we elaborate more on the reason why.

PA-UAD =⇒ PA-UD: In order to prove this we consider the contrapositive, that
is assuming the existence of an adversary A that wins in the PA-UD with non-
negligible probability, we will construct an adversary A′ that wins in the PA-UAD
with also non-negligible probability. A, additionally to the needs of A′ requires
an honestly generated mpk and oracle access to the key-generating algorithm. A′

runs PAFE.Setup honestly once and provides mpk to A, and whenever the latter
issues a QKeyGen query A′ simulates the random oracle. It runs PAFE.KeyGen
honestly, forwards the output to A, and stores the input-output information so it
can answer future repeated queries. Clearly both A and A′ have equal advantage
of winning their respective games, which concludes our analysis.

PA-UEAD =⇒ PA-UED: Similarly, to prove this we consider the contrapositive,
that is assuming the existence of an adversary A who wins in the PA-UED with
non-negligible probability, we construct an adversary A′′ that wins in the PA-
UEAD with also non-negligible probability. The proof is similar to the previous
reduction as A′′ operates exactly as A′. Therefore, both A and A′′ have equal
advantage of winning their respective games.
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For the remaining relations, namely PA-UED =⇒ PA-UD and PA-UEAD =⇒
PA-UAD we observe that the winning conditions for adversaries on either side of
the implications are different. Specifically, when the encryptor is trusted it pro-
duces a legitimate ciphertext that is decryptable to a functional output. Thus,
public auditability is satisfied only if the auditor receives that exact function
output. However, when the encryptor is untrusted, it suffices for the cipher-
text to be decryptable to any function output. This discrepancy in the winning
conditions obscures the remaining relations significantly.

7 Publicly Auditable Inner-Product MIFE

Here we present a publicly auditable MIFE scheme for inner-product function-
alities, i.e., for weighted sums between plaintext vectors x={xi}i∈[n] ∈ Zn

q and
weights {wi}i∈[n] ∈ Zn

q . We note here that the main difference between FE and
MIFE is that the latter allows computing a function over multiple (n) cipher-
texts, all of which are individually computed with different encryption keys.

To realise our construction, we employ the existing inner-product multi-input
scheme of [7]. At a high level, that construction produces “ElGamal-style” ci-
phertexts, as follows. Given a vector of inputs x={xi}i∈[n] ∈ Zn

q , the corre-
sponding ciphertexts are of the form (gr, hr, {gxi · hr

i }i∈[n]), for encryption key
ek=({si,ti}i∈[n]), and master public key mpk= (G, g, h, {hi}i∈[n]). The decryptor

multiplies all ciphertexts and divides the product by (gr)skf,g · (hr)skf,h , where
skf,g = Σn

i=1si ·wi and skf,h = Σn
i=1ti ·wi, and then solves the discrete logarithm

problem to acquire the inner product output (assuming a “small” domain for xi
and n, so that the final discrete logarithm can be computed efficiently [7]).

We now present our PA MIFE scheme that achieves public auditability in
the presence of untrusted decryptors (PA-UD), using a non-interactive zero-
knowledge argument (NIZK) [15] to produce a proof of correct decryption. Re-
ferring to the construction of Figure 9, we observe that the decryptor needs only
give the term (gr)skf,g · (hr)skf,h to potential auditors and convince them about
the fact that skf has been used appropriately to generate this term. This can be
done by proving discrete logarithm relations between what the verifier already
knows and the information received from the decryptor, i.e., proving knowledge
of a common discrete logarithm between multiple DDH tuples.

This can be done via a general-purpose NIZK or even a Σ-protocol for DDH
tuples (e.g., see [31, Ch. 5.2]). In the second case, the resulting construction would
be very efficient and would not require trusted CRS generation. To satisfy the
security definition, the NIZK should be fully zero-knowledge; if instantiated with
a Σ−protocol we assume the non-interactive version based on the Fiat-Shamir
heuristic is used which also makes it zero-knowledge against arbitrary verifiers.
Formally, the relation for the NIZK , in Camenisch-Stadler notation [17], is:

PK{(x, r):(g, h, gr, hr, gΣ
n
i=1si·wi , hΣn

i=1ti·wi , gr·Σ
n
i=1si·wi , hr·Σn

i=1ti·wi , gud · hrd)}

We state the following theorem and delegate the proof for our publicly au-
ditable MIFE scheme to Appendix E.
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PAFE.Setup(1λ, 1n):
Choose cyclic group G
of prime order q > 2λ

with generators g, h←$ G
For i ∈ [n]:
si, ti ←$ Zp

hi = gsi · hti

ek = {(si, ti)}i∈[n]

msk = {(si, ti)}i∈[n]

cd = gΣ
n
i=0si·ti · hΣn

i=0si·ti

mpk = (G, g, h, cd, {hi}i∈[n])

PAFE.KeyGen(msk′,mpk′,{wi}i∈[n]):

Parse msk′ = {(si, ti)}i∈[n]

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
skf = (Σn

i=1si · wi, Σ
n
i=1ti · wi)

pkf = (gΣ
n
i=1si·wi , hΣn

i=1ti·wi)

PAFE.Enc(mpk′, ek′,{xi}i∈[n]):

Parse ek′ := {si, ti}i∈[n]

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
re ←$ Zp

ct = (gr, hr, {gxi · hr
i }i∈[n])

PAFE.Dec(mpk′,{wi}i∈[n],sk
′
f ,ct

′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
Parse sk′f = (Σn

i=1si · wi, Σ
n
i=1ti · wi)

Parse ct′ = (gr, hr, {gxi · hr
i }i∈[n])

y=
∏n

i=1 gxi ·hr
i

g
r·(Σn

i=1
si·wi)·h

r·(Σn
i=1

ti·wi)

PAFE.ProveDec(mpk′,{wi}i∈[n],sk
′
f ,pk

′
f ,ct

′,y′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
Parse sk′f = (Σn

i=1si · wi, Σ
n
i=1ti · wi)

Parse pkf
′ = (gΣ

n
i=1si·wi , hΣn

i=1ti·wi)
Parse ct′ = (gr, hr, {gxi · hr

i }i∈[n])
π ← NIZK.Prove(mpk′,{wi}i∈[n],sk

′
f ,pk

′
f ,ct

′,y′)
Return π

PAFE.VerifyDec(mpk′,{wi}i∈[n],pk
′
f ,ct

′,y′,π′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])

Parse pkf
′ = (gΣ

n
i=1si·wi , hΣn

i=1ti·wi)
Parse ct′ = (gr, hr, {gxi · hr

i }i∈[n])
Return NIZK.Verify(mpk′,{wi}i∈[n],pk

′
f ,ct

′,y′,π′)

Fig. 9. Publicly auditable MIFE for inner products with untrusted decryptor.

Theorem 5. The construction depicted in Figure 9 is a PAFE scheme for
inner-product functionalities. It is secure as per Definition 8 and is publicly au-
ditable as per Definition 9, assuming that the MIFE scheme of [7] is IND-secure
as per Definition 6 and the employed NIZK is computationally sound.

8 Conclusion & Discussion

In this work we introduced public auditability in the context of functional encryp-
tion. We defined four flavors of PA, for each different corresponding corruption
set among the participating parties, and presented corresponding constructions
that achieve these definitions, as well as a novel indistinguishability security def-
inition for PAFE. Our constructions rely on secure FE, commitments, and NIWI
schemes to force the parties to prove their correct behavior. Finally, we proposed
a multi-input PAFE scheme that supports linear combination functionalities ex-
pressed as vector inner-products. It builds upon previous MIFE schemes that
produce “El Gamal”-style ciphertexts that are amenable to Σ-protocols, thus
being potentially very efficient for use in practice.

Our work leaves many possible directions for future research in this topic.
First, it would be of interest to design an adaptively secure PA-UEAD PAFE
scheme, since our presented construction for this setting is only selectively se-

22



cure. In this aspect, we believe it is possible to consider a different type of model
relaxation of security, i.e., with “static” function key queries. This refers to an
adversary who specifies mutually exclusive sets of functions for which it either
requests functional secret keys or solely public ones. This setting is incompa-
rable to selective security but it seems more applicable to several real-world
applications like the ones we described in the introduction of the paper. An-
other direction would be to design and implement practical PAFE schemes in
any of the auditability settings, at least for more expressive functionalities (e.g.,
quadratic functions from [11, 24]). Finally, it is worth exploring other use cases
and applications for more efficient PAFE schemes, e.g., in the context of au-
ditable cryptocurrencies [18, 26,29] and auditable blockchain storage [32].
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Appendix

A Proof of Theorem 1

We prove the PAFE security game indistinguishable regardless of the challenger
bit. We define multiple Hybrids to go from the execution of the PAFE security
game with b = 0 to the execution with b = 1 and prove them subsequently
indistinguishable. We state the advantage that the adversary has during each
transformation and provide the total advantage at the end of our analysis.

Note that we exclude from our analysis adversarial strategies that trivially
win the PAFE security game (by violating its winning conditions). This means
that if the adversary issues a series of queries like (⋆) or (⋆⋆) the advantage of
the adversary is reduced to 0, from the PAFE security game (Def. 8).

(⋆) : QEnc(x0,x1), QSKeyGen(f) such that
(⋆⋆) : QEnc(x0,x1)→ct, QPKeyGen(f), QDec(ct,f) f(x0) ̸= f(x1)

Now, observe that we can divide all remaining possible, non-trivially-winning,
strategies into two cases, based on whether the adversary issues QDec(·,·) queries
(case (i)) or not (case (ii)).

Intuitively by making such a division first we “exploit” the fact that adver-
saries who do not issue QDec(·, ·) queries (case (ii)), essentially degenerate into
FE-type adversaries. The only exception is that they can also have access to
functional public keys (which are computationally hiding commitments). On the
other hand, we know that the adversary in case (i) will issue at least one non-
trivially-violating QDec(ct, ·) query, for QEnc(x0,x1)→ct. This allows us to define
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hybrids over the total number of QEnc queries that are subsequently different
in just a single output of the QEnc(x0,x1)→ctb query (based on the challenger
bit) and prove them indistinguishable. In more detail, we present our analysis
for the two cases below:

Proof (Security).

Case (i): We assume APAFE issues at least one QDec(·, ·) query. We prove indis-
tinguishability of the game that APAFE plays when b = 0 and b = 1 through a
series of hybrids. Below we define the hybrids and prove them consecutively in-
distinguishable. The challenger bit is represented in the game/hybrid exponents.

Hybrid G0UD: It is the security game when b = 0.

Hybrid H0
UD,1: It is exactly the same game as G0UD except for the computa-

tion of the cd. In G
0
UD cd ← Com.Commit(msk,;ud), whereas in H0

UD,1 c′d ←
Com.Commit(⊤;ud). From the hiding property of the employed commitment
scheme no PPT adversary who sees a commitment can identify the commit-
ted value. Thus, G0UD ≈ H

0
UD,1 and more specifically, AdvDistinguish

G0
UD

−H0
UD,1

(APAFE) =

AdvCom-Hidding(APAFE).

Hybrid H0
UD,2: It is exactly the same game as H0

UD,1 except for the computation

of πd. In H
0
UD,1 πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud) using the

first condition for relation RUD,d, whereas in H
0
UD,2, using the second condition

of RUD,d, π
′
d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) respectively. From the

witness indistinguishability property of NIWId no PPT adversary can distinguish
between which condition is satisfied for the generation of πd. Thus, H

0
UD,1 ≈

H0
UD,2 and more specifically, AdvDistinguish

H0
UD,1−H0

UD,2
(APAFE) = AdvWI

NIWI(APAFE).

Hybrid H0
UD,3: It is exactly the same game as H0

UD,2 except for the compu-

tation of the y. In this case, we change y to be y = f(x) instead of y ←
FE.Dec(mpk,f ,skf ,ct). Remember that for APAFE to have non-negligible chance
of winning in its game, it must be that for all functions f that APAFE issues a
QSKeyGen(f) query, for all ct← QEnc(x0,x1): f(x) = f(x0) = f(x1). Addition-
ally and similarly, for all functions f for which APAFE has issued QPKeyGen(f)
and QDec(ct,f) queries, where ct← QEnc(x0,x1), it must be that f(x) = f(x0) =
f(x1). In any other case by the restrictions of the security game for PAFE
Advsec−PAFE

(

APAFE(1
λ)
)

= 0. Since APAFE cannot win in any of these two
games with non-negligible advantage unless f(x0) = f(x1), H

0
UD,2 ≈ H

0
UD,3 and

more specifically, AdvDistinguish
H0

UD,2−H0
UD,3

(APAFE) = 0.

Hybrid H0
UD,4: In this game we make the following change: the challenger sam-

ples j′ ←$ {0, · · · ,m + 1}, initializes a counter j = 0, and when APAFE is-
sues an encryption query, the challenger sets j = j + 1 and returns ctbj (we
denote that query as QEnc(x0,j ,x1,j), more concretely). Now, when APAFE is-
sues a QPKeyGen(f) query, C checks whether f(x0,j′) ̸= f(x1,j′). If so, it
samples zf , rf ←$ Zp and computes pkf ← Com.Commit(zf ,rf ). Remember
that since f(x0,j′) ̸= f(x1,j′) the adversary cannot issue a QSKeyGen(f) or
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a QDec(ctbj′ ,f) query — for that particular ciphertext. In such cases APAFE

would trivially diminish its advantage to 0, contradicting our assumption that
it has non-negligible advantage ϵ in winning the security game for PAFE. There-
fore, from the hiding property of the underlying commitment scheme, simi-
larly to G0UD ≈ HUD,1, we get that H0

UD,3 ≈ H
0
UD,4 and more specifically,

AdvDistinguish
H0

UD,3−H0
UD,4

(APAFE) = AdvCom-Hidding(APAFE).

Hybrid Hb
UD,5.j : We now define a series of hybrids, indexed by j. In these hybrids

we make the following change: the challenger samples b ←$ {0, 1} and when
APAFE issues a QEnc(x0,x1) query C returns ct0 ← PAFE.Enc(mpk,ek,x0), if j <
j′, ct1 ← PAFE.Enc(mpk,ek,x1), if j > j′, and ctb ← PAFE.Enc(mpk,ek,xb), if
j = j′. Based on the choice of j we define m+1 sub-hybrids, which we denote by
Hb

UD,5.m+1, · · ·H
b
UD,5.0. Clearly, H

0
UD,4 = Hb

UD,5.m+1, H
1
UD,4 = Hb

UD,5.0, and

H1
UD,5.j = H0

UD,5.j+1. Following we prove H0
UD,5.j ≈ H

1
UD,5.j , which translates

into H0
UD,5.j ≈ H

0
UD,5.j+1, based on the above, and ultimately into H0

UD,4 ≈

H1
UD,4.

Lemma 1. Assuming the underlying FE scheme is secure as per Definition 4
H0

UD,5.j ≈ H
1
UD,5.j.

Proof. We prove this via contraposition. We construct an adversary AFE that
utilizes APAFE to win in the security game of FE. Now, assuming APAFE issues
at most m Qenc(·) queries, AFE functions as follows:

– Initialization: AFE receives mpk from C, computes pp ← Com.Setup(1λ), sam-
ples j⋆ ←$ [m], initializes counter = 0, initializes a table Tenc, samples
rs ← {0, 1}

λ, computes cd ← Com.Commit(⊤;ud), samples b′ ← {0, 1}, and
forwards the triple (pp,mpk,cd) to APAFE.

– Encryption queries: When APAFE issues a QEnc(x0,x1) query to AFE, the lat-
ter issues a QEnc(xj ,xj) query to C and increments counter by 1. xj = x0

for counter < j⋆, and xj = x1 for counter > j⋆. For counter = j⋆ AFE for-
wards the query to C without any alteration. Regardless the case, C returns a
ciphertext ct, which AFE forwards to APAFE.

– Functional secret key queries: When APAFE issues a QSKeyGen query to AFE,
the latter forwards the query to C, who responds with skf . AFE then checks
if a QPKeyGen query has been issued for f . If not, it samples rf ←$ {0, 1}λ

and computes pkf ← Com.Commit(skf ; rf ), AFE forwards (skf ,pkf ) to APAFE.

– Functional public key queries: When APAFE issues a QPKeyGen(f) query to
AFE, the latter checks whether f(x0.j⋆) ̸= f(x1.j⋆). If so, AFE samples rf ←$

{0, 1}λ, samples zf ←$ {0, 1}λ, and computes pkf ← Com.Commit(zf ; rf ).
Otherwise, AFE forwards a QSKeyGen(f) query to C, who responds with
skf . AFE samples rf ←$ {0, 1}λ, and computes pkf ← Com.Commit(skf ; rf ).
In any case AFE returns pkf to APAFE.

– Decryption queries: When APAFE issues a QDec(ct, f) query to AFE, the latter
assigns y ← f(xj) and πd ← NIWId.Prove(mpk,⊤,f ,⊥,⊥,pkf ,ct,y,cd,ud). AFE

forwards (y,πd) to APAFE.
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– Finalization: APAFE outputs a bit b′ which A forwards to C.

The advantage AFE has in winning the FE IND-security game utilizing APAFE

is ϵ
m

> negl(λ). This derives from the fact that AFE needs to “guess” correctly
the ctbj ←Qenc(·, ·) query for which APAFE will issue at least one “legitimate”

QDec(·,ctbj) query; and does so by sampling j⋆ at random.

Thus, H0
UD,4 = Hb

UD,5.m+1 ≈ H
b
UD,5.0 = H1

UD,4 and more specifically:

AdvDistinguish
H0

UD,4−H1
UD,4

(APAFE) = AdvFE-IND security(APAFE).

Hybrid H1
UD,3: In this game we make the following change: When APAFE is-

sues a QPKeyGen(f) query, C forwards pkf ←PAFE.KeyGen(msk,mpk,f) to
APAFE. From the hiding property of the underlying commitment scheme, sim-
ilarly to H0

UD,3 ≈ H
0
UD,4, we get that H1

UD,4 ≈ H
1
UD,3 and more specifically,

AdvDistinguish
H1

UD,4−H1
UD,3

(APAFE) = AdvCom-Hidding(APAFE).

Hybrid H1
UD,2: It is exactly the same game as H1

UD,3 except for the computation

of the y. In this case, we change y to be y ← FE.Dec(mpk,f ,skf ,ct), instead of
y = f(x). Similarly to the case H0

UD,2 ≈ H
0
UD,3, we get that H1

UD,3 ≈ H
1
UD,2

and more specifically, AdvDistinguish
H1

UD,3−H1
UD,2

(APAFE) = 0.

Hybrid H1
UD,1: It is exactly the same game as H1

UD,2 except for the compu-

tation of πd. In H0
UD,2 π′

d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) using

the second condition of RUD,d, whereas in H0
UD,1, using the first condition for

relation RUD,d, πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud). From the
witness indistinguishability property of NIWId, similarly to H0

UD,1 ≈ H
0
UD,2

we get that H1
UD,2 ≈ H

1
UD,1 and more specifically, AdvDistinguish

H1
UD,2−H1

UD,1
(APAFE) =

AdvWI
NIWI(APAFE).

Game G1UD: It is the security game when b = 1. It is exactly the same game as

H1
UD,1 except for the computation of the cd. In H

1
UD,1 c

′
d ← Com.Commit(⊤;ud),

whereas in G1UD cd ← Com.Commit(msk,;ud). From the hiding property of the
employed commitment scheme no PPT adversary who sees a commitment can
identify the committed value. Thus, H1

UD,1 ≈ G
1
UD and to be more specific,

AdvDistinguish
H1

UD,1−G1
UD

(APAFE) = AdvCom-Hidding(APAFE).

Therefore, the overall advantage APAFE has in case (i): AdvDistinguish
G0
UD

−G1
UD

,(i)
(APAFE) ≤

4×AdvCom-Hidding(APAFE) + 2×AdvWI
NIWI(APAFE) +AdvFE-IND security(APAFE).

Case (ii):We assume APAFE issues no QDec(·, ·) queries and has a non-negligible
advantage ϵ in winning the PAFE ecurity game. In this case we exploit the fact
that APAFE will not issue a QSKeyGen(f) query if there exists a pair of messages
(x0, x1) in a QEnc(x0, x1)→ ct query, such that f(x0) ̸= f(x1) and vice versa —
since either way would trivially violate the winning conditions of the PAFE secu-
rity game, rendering Advsec−PAFE(APAFE) = 0

(

see case (⋆)
)

. We therefore can
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construct a “greedy” adversary A′
FE who utilizes APAFE and wins the FE IND-

security game with non-negligible advantage. A′
FE forwards all queries made by

APAFE to its challenger, except for QPKeyGen(·) ones. When APAFE issues a
QPKeyGen(f) query to A′

FE, the latter checks whether ∃ct←QEnc(x0, x1) such
that f(x0) ̸= f(x1). If so, A

′
FE samples rf ←$ {0, 1}λ, samples zf ←$ {0, 1}λ, and

computes pkf ← Com.Commit(zf ; rf ). Otherwise, A′
FE forwards a QSKeyGen(f)

query to C, who responds with skf . A
′
FE samples rf ←$ {0, 1}λ, and computes

pkf ← Com.Commit(skf ; rf ). In any case A′
FE returns pkf to APAFE. Since the

commitment scheme is computationally hiding A′
FE has also ϵ > negl(λ) advan-

tage in winning the FE IND-security game, violating our initial assumption.

(Auditability). We show that no PPT adversary APA-UD can violate the PA-
UD property of PAFE, assuming a computationally sound NIWI for relation
RUD,d, NIWId and a perfectly binding commitment scheme Com. We examine
two cases. First, there is the case where the adversary APA-UD may output a
tuple T that satisfies RUD,d. If so, it either satisfies the condition that ensures
that PA-UD holds

(

pkf ← Com(skf ; rf ) ∧ y ← FE.Dec(mpk,f ,skf ,ct)
)

, or the
“trapdoor” condition cd ← Com(⊤;ud). In the PA-UD setting cd is generated by
the authority (assumed to be honest in this setting), meaning that no malicious
decryptor can generate a convincing proof using condition (2) of RUD,d.

Otherwise, without loss of generality we distinguish between the following
regarding the first condition: T either violates the commitment or the algorithmic
condition. Since the commitment is perfectly binding, ∀pkf ∄(sk⋆f ,r

⋆
f ) ̸= (skf ,rf )

such that pkf ← Com(sk⋆f ;r
⋆
f ) ∧ pkf ← Com(skf ;rf ). Additionally, since mpk

and ct, are provided by trusted entities and the uniquely correct skf is used
in the FE.Dec algorithm, y is also explicitly correct (due to the correctness of
the underlying FE scheme). Due to the soundness property of NIWId any proof
π⋆ that passes verification is generated for accepting PA-UD statements using
valid witnesses. Therefore, no PPT APA-UD can break the PA-UD property with
non-negligible advantage.

B Proof of Theorem 2

The proof follows in a very similar way with the one of the PA-UD construc-
tion (Theorem 1). The main difference is the inclusion of two additional hy-
brids for the transformation of ce and πe. Similarly to the previous analysis, we
get the public auditability by exploiting the trusted generation of ce, cd, dur-
ing PAFE.Setup. These commitments function as “trapdoors” for RUED,e and
RUED,d respectively and allow our fabricated adversary AFE to generate and
forward convincing proofs to APAFE without having access to encrypted values
or valid functional decryption keys.

Proof (Security).

Case (i): We assume APAFE issues at least one QDec(·, ·) query. We prove indis-
tinguishability of the game that APAFE plays when b = 0 and b = 1 through a
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series of hybrids. Below we define the hybrids and prove them consecutively in-
distinguishable. The challenger bit is represented in the game/hybrid exponents.

Hybrid G0UED: It is the security game when b = 0.

Hybrid H0
UED,1: It is exactly the same game as G0UED except for the compu-

tation of the cd. In G
0
UED cd ← Com.Commit(msk,;ud), whereas in H0

UED,1 c′d
← Com.Commit(⊤;ud). From the hiding property of the employed commitment
scheme no PPT adversary who sees a commitment can identify the committed
value. Thus, G0UED ≈ H

0
UED,1 and more specifically, AdvDistinguish

G0
UED

−H0
UED,1

(APAFE) =

AdvCom-Hidding(APAFE).

Hybrid H0
UED,2: It is exactly the same game as H0

UED,1 except for the compu-

tation of the ce. In H
0
UED,1 ce ← Com.Commit(msk,;ue), whereas in H

0
UED,2 c′e

← Com.Commit(⊤;ue). From the hiding property of the employed commitment
scheme no PPT adversary who sees a commitment can identify the committed
value. Thus, H0

UED,1 ≈ H
0
UED,2 and specifically AdvDistinguish

H0
UED,1−H0

UED,2
(APAFE) =

AdvCom-Hidding(APAFE).

Hybrid H0
UED,3: It is exactly the same game as H0

UED,2 except for the computa-

tion of πd. In H
0
UED,2 πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud) using

the first condition for relation RUED,d, whereas in H
0
UED,3, using the second con-

dition of RUED,d, π
′
d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) respectively.

From the witness indistinguishability property of NIWId no PPT adversary
can distinguish between which condition is satisfied for the generation of πd.
Thus, H0

UED,2 ≈ H
0
UED,3 and more specifically, AdvDistinguish

H0
UED,2−H0

UED,3
(APAFE) =

AdvWI
NIWI(APAFE).

Hybrid H0
UED,4: It is exactly the same game as H0

UED,3 except for the computa-

tion of πe. In H
0
UED,3 πe ← NIWIe.Prove(mpk,msk,ek,x,ct,ce,ue,se) using the first

condition for relation RUED,e, whereas in H
0
UED,4, using the second condition of

RUED,e, π
′
e ← NIWId.Prove(mpk,⊥,⊥,⊥,ct,ce,ue,⊥) respectively. From the wit-

ness indistinguishability property of NIWIe no PPT adversary can distinguish
between which condition is satisfied for the generation of πe. Thus, H

0
UED,3 ≈

H0
UED,4 and more specifically, AdvDistinguish

H0
UED,3−H0

UED,4
(APAFE) = AdvWI

NIWI(APAFE).

Hybrid H0
UED,5: It is exactly the same game as H0

UED,6 except for the com-

putation of the y. In this case, we change y to be y = f(x) instead of y ←
FE.Dec(mpk,f ,skf ,ct). Remember that for APAFE to have non-negligible chance
of winning in its game, it must be that for all functions f that APAFE issues a
QSKeyGen(f) query, for all ct← QEnc(x0,x1): f(x) = f(x0) = f(x1). Addition-
ally and similarly, for all functions f for which APAFE has issued QPKeyGen(f)
and QDec(ct,f) queries, where ct← QEnc(x0,x1), it must be that f(x) = f(x0) =
f(x1). In any other case by the restrictions of the security game for PAFE
Advsec−PAFE

(

APAFE(1
λ)
)

= 0. Since APAFE cannot win in any of these two
games with non-negligible advantage unless f(x0) = f(x1), H

0
UED,4 ≈ H

0
UED,5

and more specifically, AdvDistinguish
H0

UED,4−H0
UED,5

(APAFE) = 0.
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Hybrid H0
UED,6: In this game we make the following change: the challenger

samples j′ ←$ {0, · · · ,m + 1}, initializes a counter j = 0, and when APAFE

issues an encryption query, the challenger sets j = j + 1 and returns ctbj (we
denote that query as QEnc(x0,j ,x1,j), more concretely). Now, when APAFE is-
sues a QPKeyGen(f) query, C checks whether f(x0,j′) ̸= f(x1,j′). If so, it
samples zf , rf ←$ Zp and computes pkf ← Com.Commit(zf ,rf ). Remember
that since f(x0,j′) ̸= f(x1,j′) the adversary cannot issue a QSKeyGen(f) or
a QDec(ctbj′ ,f) query — for that particular ciphertext. In such cases APAFE

would trivially diminish its advantage to 0, contradicting our assumption that
it has non-negligible advantage ϵ in winning the security game for PAFE. There-
fore, from the hiding property of the underlying commitment scheme, similarly
to G0UED ≈ HUED,1, we get that H0

UED,5 ≈ H
0
UED,6 and more specifically,

AdvDistinguish
H0

UED,5−H0
UED,6

(APAFE) = AdvCom-Hidding(APAFE).

Hybrid Hb
UD,7.j : We now define a series of hybrids, indexed by j. In these hybrids

we make the following change: the challenger C samples b ←$ {0, 1} and when
APAFE issues a QEnc(x0,x1) query C returns ct0 ← PAFE.Enc(mpk,ek,x0), if j <
j′, ct1 ← PAFE.Enc(mpk,ek,x1), if j > j′, and ctb ← PAFE.Enc(mpk,ek,xb), if
j = j′. Based on the choice of j we define m+1 sub-hybrids, which we denote by
Hb

UED,7.m+1, · · ·H
b
UED,7.0. Clearly, H

0
UED,6 = Hb

UED,7.m+1, H
1
UD,6 = Hb

UED,7.0,

and H1
UED,7.j = H0

UED,7.j+1. Following we prove H0
UED,7.j ≈ H

1
UED,7.j , which

translates into H0
UED,7.j ≈ H

0
UED,7.j+1, based on the above, and ultimately into

H0
UED,6 ≈ H

1
UED,6.

Lemma 2. Assuming the underlying FE scheme is secure as per Definition 4
H0

UED,7.j ≈ H
1
UED,7.j.

Proof. We prove this via contraposition. We construct an adversary AFE that
utilizes APAFE to win in the security game of FE. Now, assuming APAFE issues
at most m Qenc(·) queries, AFE functions as follows:

– Initialization: AFE receives mpk from C, computes pp ← Com.Setup(1λ), sam-
ples j⋆ ←$ [m], initializes counter = 0, initializes a table Tenc, samples
rs ← {0, 1}

λ, computes cd ← Com.Commit(⊤;ud), samples b′ ← {0, 1}, and
forwards the triple (pp,mpk,cd) to APAFE.

– Encryption queries: When APAFE issues a QEnc(x0,x1) query to AFE, the lat-
ter issues a QEnc(xj ,xj) query to C and increments counter by 1. xj = x0

for counter < j⋆, and xj = x1 for counter > j⋆. For counter = j⋆ AFE

forwards the query to C without any alteration. Also, AFE computes πe ←
NIWId.Prove(mpk,⊥,⊥,⊥,ct,ce,ue,⊥). Regardless the case, C returns a cipher-
text ct and AFE forwards (ct,πe) to APAFE.

– Functional secret key queries: When APAFE issues a QSKeyGen query to AFE,
the latter forwards the query to C, who responds with skf . AFE then checks
if a QPKeyGen query has been issued for f . If not, it samples rf ←$ {0, 1}λ

and computes pkf ← Com.Commit(skf ; rf ), AFE forwards (skf ,pkf ) to APAFE.
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– Functional public key queries: When APAFE issues a QPKeyGen(f) query to
AFE, the latter checks whether f(x0.j⋆) ̸= f(x1.j⋆). If so, AFE samples rf ←$

{0, 1}λ, samples zf ←$ {0, 1}λ, and computes pkf ← Com.Commit(zf ; rf ).
Otherwise, AFE forwards a QSKeyGen(f) query to C, who responds with
skf . AFE samples rf ←$ {0, 1}λ, and computes pkf ← Com.Commit(skf ; rf ).
In any case AFE returns pkf to APAFE.

– Decryption queries: When APAFE issues a QDec(ct, f) query to AFE, the latter
assigns y ← f(xj) and πd ← NIWId.Prove(mpk,⊤,f ,⊥,⊥,pkf ,ct,y,cd,ud). AFE

forwards (y,πd) to APAFE.

– Finalization: APAFE outputs a bit b′ which A forwards to C.

The advantage AFE has in winning the FE IND-security game utilizing APAFE

is ϵ
m

> negl(λ). This derives from the fact that AFE needs to “guess” correctly
the ctbj ←Qenc(·, ·) query for which APAFE will issue at least one “legitimate”

QDec(·,ctbj) query; and does so by sampling j⋆ at random.

Thus, H0
UED,6 = Hb

UED,7.m+1 ≈ H
b
UED,7.0 = H1

UED,6 and more specifically:

AdvDistinguish
H0

UED,6−H1
UED,6

(APAFE) = AdvFE-IND security(APAFE).

Hybrid H1
UD,5: In this game we make the following change: When APAFE issues

a QPKeyGen(f) query, C forwards pkf ←PAFE.KeyGen(msk,mpk,f) to APAFE.
From the hiding property of the underlying commitment scheme, similarly to
H0

UED,5 ≈ H
0
UED,6, we get that H1

UED,6 ≈ H
1
UED,5 and more specifically,

AdvDistinguish
H1

UED,6−H1
UED,5

(APAFE) = AdvCom-Hidding(APAFE).

Hybrid H1
UED,4: It is exactly the same game as H1

UED,5 except for the com-

putation of the y. In this case, we change y to be y ← FE.Dec(mpk,f ,skf ,ct),
instead of y = f(x). Similarly to the case H0

UED,4 ≈ H
0
UED,5, we get that

H1
UED,5 ≈ H

1
UED,4 and more specifically, AdvDistinguish

H1
UED,5−H1

UED,4
(APAFE) = 0.

Hybrid H0
UED,3: It is exactly the same game as H0

UED,4 except for the com-

putation of πe. In H
0
UED,4 πe ← NIWId.Prove(mpk,⊥,⊥,⊥,ct,ce,ue,⊥) using the

second condition of RUED,e, whereas in H0
UED,3, using the first condition for

relation RUED,e, πe ← NIWId.Prove(mpk,msk,ek,x,ct,ce,ue,se). From the witness
indistinguishability property of NIWIe, similarly to H0

UED,3 ≈ H
0
UED,4 we get

that H1
UED,4 ≈ H

1
UED,3 and more specifically, AdvDistinguish

H1
UED,4−H1

UED,3
(APAFE) =

AdvWI
NIWI(APAFE).

Hybrid H0
UED,2: It is exactly the same game as H0

UED,3 except for the computa-

tion of πd. In H
0
UED,3 π′

d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) using the

second condition of RUD,d, whereas in H
0
UED,2, using the first condition for rela-

tion RUD,d, πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud). From the wit-
ness indistinguishability property of NIWId, similarly to H0

UED,2 ≈ H
0
UED,3 we

get that H1
UED,3 ≈ H

1
UED,2 and more specifically, AdvDistinguish

H1
UED,3−H1

UED,2
(APAFE) =

AdvWI
NIWI(APAFE).
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Game H1
UED,1: It is exactly the same game as H1

UED,2 except for the computa-

tion of the ce. In H
1
UED,1 c′e ← Com.Commit(⊤;ue), whereas in H1

UED,1 ce ←
Com.Commit(msk,;ue). From the hiding property of the employed commitment
scheme no PPT adversary who sees a commitment can identify the committed
value. Thus, H1

UED,2 ≈ H
1
UED,1 and specifically, AdvDistinguish

H1
UED,2−H1

UED,1
(APAFE) =

AdvCom-Hidding(APAFE).

Game G1UED: It is the security game when b = 1. It is exactly the same game

as H1
UED,1 except for the computation of the cd. In H

1
UED,1 the commitment c′d

← Com.Commit(⊤;ud), whereas in G
1
UED cd ← Com.Commit(msk;ud). From the

hiding property of the employed commitment scheme no PPT adversary who
sees a commitment can identify the committed value. Thus, H1

UED,1 ≈ G
1
UED

and more specifically, AdvDistinguish
H1

UED,1−G1
UED

(APAFE) = AdvCom-Hidding(APAFE).

Thus, the overall advantage APAFE has in case (i): AdvDistinguish
G0
UED

−G1
UED

,(i)
(APAFE) ≤

6×AdvCom-Hidding(APAFE) + 4×AdvWI
NIWI(APAFE) +AdvFE-IND security(APAFE).

Case (ii):We assume APAFE issues no QDec(·, ·) queries and has a non-negligible
advantage ϵ in winning the PAFE ecurity game. In this case we exploit the fact
that APAFE will not issue a QSKeyGen(f) query if there exists a pair of messages
(x0, x1) in a QEnc(x0, x1)→ ct query, such that f(x0) ̸= f(x1) and vice versa —
since either way would trivially violate the winning conditions of the PAFE secu-
rity game, rendering Advsec−PAFE(APAFE) = 0

(

see case (⋆)
)

. We therefore can
construct a “greedy” adversary A′

FE who utilizes APAFE and wins the FE IND-
security game with non-negligible advantage. A′

FE forwards all queries made by
APAFE to its challenger, except for QPKeyGen(·) ones. When APAFE issues a
QPKeyGen(f) query to A′

FE, the latter checks whether ∃ct←QEnc(x0, x1) such
that f(x0) ̸= f(x1). If so, A

′
FE samples rf ←$ {0, 1}λ, samples zf ←$ {0, 1}λ, and

computes pkf ← Com.Commit(zf ; rf ). Otherwise, A′
FE forwards a QSKeyGen(f)

query to C, who responds with skf . A
′
FE samples rf ←$ {0, 1}λ, and computes

pkf ← Com.Commit(skf ; rf ). In any case A′
FE returns pkf to APAFE. Since the

commitment scheme is computationally hiding A′
FE has also ϵ > negl(λ) advan-

tage in winning the FE IND-security game, violating our initial assumption.

(Auditability). We show that no PPT adversary APA-UED can violate the PA-
UED auditability property of PAFE, assuming a computationally sound NIWI
for relation RUED,d, NIWId, a computationally sound NIWI for relation RUED,e,
NIWIe, and a perfectly binding commitment scheme Com.

We examine two cases. First, the case where the adversary APA-UED may out-
put a tuple T that satisfies RUED,d. If so, it either satisfies the condition that
ensures that PA-UED holds (pkf ← Com(skf ; rf ) ∧ y ← FE.Dec(mpk,f ,skf ,ct)),
or the “trapdoor” condition cs ← Com(0len; rs). In the PA-UED setting cd is gen-
erated by a trusted authority, meaning that no malicious decryptor can generate
a convincing proof using condition (2) of RUED,d. Similarly, no PPT adversary
can provide a convincing proof that satisfies the second condition of RUED,e.
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Otherwise, without loss of generality we distinguish between the following: T
either violates any of the commitments or the algorithmic conditions. Since the
commitment is perfectly binding, ∀pkf ∄(sk⋆f ,r

⋆
f ) ̸= (skf ,rf ) such that pkf ←

Com(sk⋆f ;r
⋆
f ) ∧ pkf ← Com(skf ;rf ). Additionally, since mpk, f , and ct are pro-

vided by the trusted authority and the uniquely correct skf is used in the FE.Dec
algorithm, y is also explicitly correct (due to the correctness of the underlying
FE scheme). Due to the soundness property of NIWId any proof π⋆

d that passes
verification is generated for accepting PA-UED statements using valid witnesses.
Similarly, regarding RUED,e, ce is generated in a trusted manner and due to
the soundness property of NIWIe any proof π⋆

e that passes verification is gener-
ated for accepting PA-UED statements using valid witnesses. Therefore, no PPT
APA-UED can break the PA-UED property with non-negligible advantage.

C Proof of Theorem 3

Proof (Security). To prove our construction secure we show that the execution
of the security game when the challenger chooses b = 0 is indistinguishable
from the one when it picks b = 1. The proof comprises of a series of proofs
that render the hybrids below (which are depicted in Table 2) indistinguishable,
consecutively. Symbol ′ signifies the elements that are not used in the generation
of proofs πd, πf respectively.

– Hybrid HUAD,0: This is the security game with b = 0. The master public

key is mpk′ = {mpki}i∈[4], where ∀i ∈ [4] (mski,mpki,eki) ← Setup(1λ;si)
for some random string si. The challenge ciphertext is ct′ ←{cti}i∈[4], where
∀i ∈ [4] cti ← Enc(eki,x0;re,i), for some random string re,i. The functional
secret keys are sk′f = {skf,i, rf,i}i∈[4], where ∀i ∈ [4] and for random strings
rf,i and rk,i, skf,i ← FE.KeyGen(mpki,mski, fi; rki

). The functional public keys
are pkf = {pkf,i}i∈[4], where ∀i ∈ [4] pkf,i ←Com(skf,i; rf,i). The functional
output y0 ←Dec(mpki,f ,skf,i,cti), ∀i ∈ [4]. πf is computed for condition (1)
of relation RUAD,f and πd is computed for condition (1) of relation RUAD,d.

– Hybrid HUAD,1: This hybrid is identical to the previous one, except for the

computation of πd. Using indices {1, 2}, πd is computed for condition (2) of
relation RUAD,d.

– Hybrid HUAD,2: This hybrid is identical to the previous one, except for the

computation of πf . Using indices {1, 2, 3}, πf is computed for condition (2)
of relation RUAD,f .

– Hybrid HUAD,3: This hybrid is identical to the previous one, except for the

computation of ct4, i.e., ct4 ←Enc(ek4,x1;re,4).
– Hybrid HUAD,4: This hybrid is identical to the previous one, except for the

computation of πf , which is computed using indices {1, 2, 4}.
– Hybrid HUAD,5: This hybrid is identical to the previous one, except for ct3,

i.e., ct3 ←Enc(ek3,x1;re,3).
– Hybrid HUAD,6: This hybrid is identical to the previous one, except for the

computation of πd, which is computed using indices {1, 4}.
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HUAD {ct1,ct2,ct3,ct4} {(skf , pkf )i}i πf πd Security

0 x0, x0, x0, x0 f, f, f, f (1) (1) -

1 x0, x0, x
′
0, x

′
0 f, f, f, f (1) (2) NIWId

2 x0, x0, x
′
0, x

′
0 f, f, f, f ′ (2) (2) NIWIf

3 x0, x0, x
′
0, x

′
1 f, f, f, f ′ (2) (2) FE

4 x0, x0, x
′
0, x

′
1 f, f, f ′, f (2) (2) NIWIf

5 x0, x0, x
′
1, x

′
1 f, f, f ′, f (2) (2) FE

6 x0, x
′
0, x

′
1, x1 f, f, f ′, f (2) (2) NIWId

7 x0, x
′
0, x

′
1, x1 f, f ′, f, f (2) (2) NIWIf

8 x0, x
′
1, x

′
1, x1 f, f ′, f, f (2) (2) FE

9 x′0, x
′
1, x1, x1 f, f ′, f, f (2) (2) NIWId

10 x′0, x
′
1, x1, x1 f ′, f, f, f (2) (2) NIWIf

11 x′1, x
′
1, x1, x1 f ′, f, f, f (2) (2) FE

12 x′1, x
′
1, x1, x1 f, f, f, f (1) (2) NIWIf

13 x1, x1, x1, x1 f, f, f, f (1) (1) NIWId
Table 2. Hybrids for the security proof of the PA-UAD PAFE.

– Hybrid HUAD,7: This hybrid is identical to the previous one, except for the

computation of πf , which is computed using indices {1, 3, 4}.
– Hybrid HUAD,8: This hybrid is identical to the previous one, except for the

computation of ct2, i.e., ct2 ←Enc(ek2,x1;re,2).
– Hybrid HUAD,9: This hybrid is identical to the previous one, except for the

computation of πd, which is computed using indices {3, 4}.
– Hybrid HUAD,10: This hybrid is identical to the previous one, except for the

computation of πf , which is computed using indices {2, 3, 4}.
– Hybrid HUAD,11: This hybrid is identical to the previous one, except for ct1,

i.e., ct1 ←Enc(ek1,x1;re,1).
– Hybrid HUAD,12: This hybrid is identical to the previous one, except for the

computation of πf . Using indices {1, 2, 3, 4}, πf is computed for condition (1)
of relation RUAD,f .

– Hybrid HUAD,13: This hybrid is identical to the previous one, except for the

computation of πd. Using indices {1, 2, 3, 4}, πd is computed for condition (1)
of relation RUAD,d. Additionally, it is the real game with challenger bit b=1.

[HUAD,0 ≈ HUAD,1] Assuming that NIWId is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,0 and
HUAD,1 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πd is computed. In HUAD,0 is computed for condition (1) of RUAD,d using
the real witness using indices {1, 2, 3, 4}, whereas in HUAD,1 is computed for
condition (2) of RUAD,d using the indices {1, 2}. We can construct an adver-
sary that plays the witness indistinguishability game for NIWId, and internally
acts as the challenger for the indistinguishability game of PAFE. The advan-
tage of the NIWI-adversary is bound by the PAFE-adversary, since NIWId is a
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non-interactive witness indistinguishable proof system, HUAD,0 and HUAD,1 are
computationally indistinguishable.

[HUAD,1 ≈ HUAD,2] Assuming that NIWIf is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,1 and
HUAD,2 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πf is computed. In HUAD,1 is computed for condition (1) of RUAD,f using
the “real” witness for indices {1, 2, 3, 4}, whereas in HUAD,2 is computed for
condition (2) of RUAD,f using the indices {1, 2, 3}. Similarly to the previous
analysis we can construct an adversary that plays the witness indistinguishability
game for NIWIf , and internally acts as the challenger for the indistinguishability
game of PAFE. The advantage of the NIWI-adversary is bound by the PAFE-
adversary, and since NIWIf is a non-interactive witness indistinguishable proof
system, HUAD,1 and HUAD,2 are computationally indistinguishable.

[HUAD,2 ≈ HUAD,3] Assuming that FE=(FE.Setup, FE.Keygen,FE.Enc, FE.Dec)
is a secure functional encryption scheme as per Definition 3, the outputs of
experiments as described in HUAD,2 and HUAD,3 are computationally indistin-
guishable.

Proof. The only difference between the hybrids is the manner in which the
challenge ciphertext is created. More specifically, in HUAD,2, the fourth com-
ponent of the ciphertext is computed as an encryption of message x0, whereas
in HUAD,3 as an encryption of message x1. Let us consider an adversary AFE

that interacts with a challenger C to break the security of FE. Also, inter-
nally, it acts as the challenger in the PAFE security game against an adver-
sary AHUAD,2−HUAD,3

that tries to distinguish between HUAD,2 and HUAD,3.
AFE functions as follows: it chooses to encrypt x0, executes everything hon-
estly for indices {1, 2, 3}, and forwards the pair (x0,x1) to challenger C. AFE re-
ceives a ciphertext ct4, corresponding to either of the two plaintexts above and
forwards it to AHUAD,2−HUAD,3

alongside the honestly generated information.
AHUAD,2−HUAD,3

outputs a bit β which AFE forwards to C. Clearly, AFE runs in
polynomial time andAdvsec−PAFE(AHUAD,2−HUAD,3

) ≤ AdvFE−security(AFE) ≤
negl(λ). Therefore, HUAD,2 and HUAD,3 are computationally indistinguishable.

[HUAD,3 ≈ HUAD,4] Assuming that NIWIf is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,3 and
HUAD,4 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πf is computed. In HUAD,3 is computed for condition (2) of RUAD,f using the
indices {1, 2, 3}, whereas in HUAD,4 is computed for condition (2) of RUAD,f

using indices {1, 2, 4}. Since NIWIf is a non-interactive witness indistinguishable
proof system, HUAD,3 and HUAD,4 are computationally indistinguishable.
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[HUAD,4 ≈ HUAD,5] Assuming that FE=(FE.Setup, FE.Keygen,FE.Enc, FE.Dec)
is a secure functional encryption scheme as per Definition 3, the outputs of
experiments as described in HUAD,4 and HUAD,5 are computationally indistin-
guishable.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUAD,4, the third component of
the ciphertext is computed as an encryption of message x0, whereas inHUAD,5 as
an encryption of message x1. The proof is very similar with the one forHUAD,2 ≈
HUAD,3.

[HUAD,5 ≈ HUAD,6] Assuming that NIWId is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,5 and
HUAD,6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proofs πd and πf and computed. In HUAD,5 πd is computed for condition (2) of
RUAD,d using the indices {1, 2}, whereas in HUAD,6 is computed for condition
(2) of RUAD,d using the indices {1, 4}. Since NIWId is a non-interactive wit-
ness indistinguishable proof systems, HUAD,5 and HUAD,6 are computationally
indistinguishable.

[HUAD,6 ≈ HUAD,7] Assuming that NIWIf is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,6 and
HUAD,7 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πf is computed. In HUAD,6 is computed for condition (2) of RUAD,f using the in-
dices {1, 2, 4}, whereas in HUAD,7 is computed for condition (2) of RUAD,f using
the indices {1, 3, 4}. Since NIWIf is a non-interactive witness indistinguishable
proof system, HUAD,6 and HUAD,7 are computationally indistinguishable.

[HUAD,7 ≈ HUAD,8] Assuming that FE=(FE.Setup,FE.Keygen,FE.Enc,FE.Dec) is
a secure functional encryption scheme as per Definition 3, the outputs of exper-
iments as described in HUAD,7 and HUAD,8 are computationally indistinguish-
able.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUAD,7, the second component
of the ciphertext is computed as an encryption of message x0, whereas in HUAD,8

as an encryption of message x1. The proof is similar with the one for HUAD,2 ≈
HUAD,3.

[HUAD,8 ≈ HUAD,9] Assuming that NIWId is a non-interactive witness indistin-
guishable proof system, the outputs of experiments as described in HUAD,8 and
HUAD,9 are computationally indistinguishable.
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Proof. The only difference between the two hybrids is the manner in which proof
πd is computed. In HUAD,8 is computed for condition (2) of RUAD,d using the
trapdoor witness with indices {1, 4}, whereas HUAD,9 is computed for condition
(2) of RUAD,d using the real witness for indices {3, 4}. The proof is very similar
to the one of HUAD,2 ≈ HUAD,3.

[HUAD,9 ≈ HUAD,10] Assuming that NIWIf is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUAD,9

and HUAD,10 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πf is computed. In HUAD,9 is computed for condition (2) of RUAD,f using the
indices {1, 3, 4}, whereas in HUAD,10 is computed for condition (2) of RUAD,f

using the indices {2, 3, 4}. Since NIWIf is a non-interactive witness indistinguish-
able proof system, HUAD,9 and HUAD,10 are computationally indistinguishable.

[HUAD,10 ≈HUAD,11] Assuming that FE=(FE.Setup,FE.Keygen,FE.Enc, FE.Dec)
is a secure functional encryption scheme as per Definition 3, the outputs of ex-
periments as described in HUAD,10 and HUAD,11 are computationally indistin-
guishable.

Proof. The only difference between the hybrids is the manner in which the
challenge ciphertext is created. More specifically, in HUAD,10, the first com-
ponent of the ciphertext is computed as an encryption of message x0, whereas
in HUAD,11 as an encryption of message x1. The proof is very similar with the
one for HUAD,2 ≈ HUAD,3.

[HUAD,11 ≈ HUAD,12] Assuming that NIWIf is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUAD,11

and HUAD,12 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πf is computed. In HUAD,11 is computed for condition (2) of RUAD,f using the
indices {2, 3, 4}, whereas in HUAD,12 is computed for condition (1) of RUAD,f

using the real witness with indices {1, 2, 3, 4}.The proof is very similar to the
one of HUAD,1 ≈ HUAD,2.

[HUAD,12 ≈ HUAD,13] Assuming that NIWId is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUAD,12

and HUAD,13 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πd is computed. In HUAD,12 is computed for condition (2) of RUAD,d using the
trapdoor witness with indices {3, 4}, whereas HUAD,13 is computed for condition
(1) of RUAD,d using the real witness for indices {1, 2, 3, 4}. The proof is very
similar to the one of HUAD,0 ≈ HUAD,1.
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(Auditability). For an adversary to break the auditability property for PAFE,
it needs to provide the respective convincing proofs while the output of the
decryption algorithm does not correspond to any function output. In addition
to the analysis performed in the proofs of Theorem 1 and Theorem 2 we now
need to consider all four possible combinations for accepting proofs πd, πf and
show that in all possible cases the decryption output is the legitimate one.

1. Condition (1) of relation RUAD,d and condition (1) of relation RUAD,f are
satisfied. Therefore, ∀k ∈ [4] : pkf,k ← Com(skf,k; rf,k) ∧ Dec(mpkk,f ,skf,k,
ctk)=yk and ∀j ∈ [4] : pkf,j ← Com(skf,j ; rf,j) ∧ (mpkj ,mskj)← Setup(1λ; sj)
∧ skf,j ← KeyGen(mpkj ,mskj ,f ;rk,j). As ∀k ∈ [4] Dec(mpkk, fk,skf,k, ctk)=yk,
therefore, PAFE.Dec({mpki,fi,skf,i,cti}i∈[4])=yk.

2. Condition (1) of relation RUAD,d and condition (2) of relation RUAD,f are
satisfied. Therefore, ∀k ∈ [4] : pkf,k ← Com(skf,k; rf,k) ∧ Dec(mpkk,f ,skf,k,
ctk)=yk and ∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1: pkf,j ← Com(skf,j ; rf,j)
∧ (mpkj ,mskj) ← Setup(1λ; sj) ∧ skf,j ← KeyGen(mpkj ,mskj ,f ;rk,j). Addi-
tionally, ∀ i ∈ [4] FE.Enc(mpki,eki, x) = cti. As ∃A1 ⊂ [4], with |A1| = 3,
s.t. Dec(mpkk, fk,skf,k, ctk)=yk, PAFE.Dec({mpki, fi, skf,i ,cti}i∈A1

)=yk.

3. Condition (2) of relation RUAD,d and condition (1) of relation RUAD,f

are satisfied. Therefore, ∃A2 ⊂ [4], with |A2| = 2, such that ∀k ∈ A2:
pkf,k ← Com(skf,k; rf,k) ∧ Dec(mpkk,fk,skf,k,ctk)=yk and ∀j ∈ [4]: pkf,j ←
Com(skf,j ; rf,j) ∧ (mpkj ,mskj)← Setup(1λ; sj) ∧ skf,j ← KeyGen(mpkj ,mskj ,
fj ;rk,j). Since the encryptor is trusted ct← PAFE.Enc(mpk,ek,x). Addition-
ally all skf are validly generated. Therefore yk is a valid decryption for all
indexes.

4. Condition (2) of relation RUAD,d and condition (2) of relation RUAD,f

are satisfied. Therefore, ∃A2 ⊂ [4], with |A2| = 2, s.t. ∀k ∈ A2: pkf,k ←
Com(skf,k; rf,k) ∧ Dec(mpkk,fk,skf,k,ctk)=yk ∧cf =Com({skf,i}i∈[4]};uf )
∧cd =Com(0;ud) and ∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1: pkf,j ←
Com(skf,j ; rf,j) ∧ (mpkj ,mskj)← Setup(1λ; sj) ∧ skf,j ← KeyGen(mpkj ,mskj ,
fj ;rk,j) ∧cf = Com({skf,i}i∈[4]};uf ) ∧∃ y ∈ Xλ such that ∀ i ∈ [4] Dec(mpki,
fi,skf,i,cti) = y. By pigeonhole principle ∃j⋆ ∈ [4] for which FE.Dec(mpkj⋆ ,
fj⋆ , skf,j⋆ , ctj⋆)=yk. Additionally, similarly to the case above ∀ i ∈ [4]
FE.Enc(mpki,eki, x) = cti. Thus, since 3-out-of-4 skf are validly generated
as well, deterministically, PAFE.Dec({mpki,fi,skf,i,cti}i∈A1)=yk.

D Proof of Theorem 4

Proof (Security). To prove our constructions secure we show that the execution
of the security game when the challenger chooses b = 0 is indistinguishable from
the one when it picks b = 1. The proof comprises of a series of hybrids which are
depicted in Table 2 and are consecutively indistinguishable. The proof has many
similarities with that of Theorem 3, hence here we focus on some interesting
steps where the two proofs deviate. Let us focus on the interesting cases of
HUEAD,9 ≈ HUEAD,10 and the PA-UEAD auditability.
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H {ct1,ct2,ct3,ct4} πe ce {(skf , pkf )i}i πf cf y πd cd Security
0 x0, x0, x0, x0 (1) 1 f, f, f, f (1) 1 yk (1) 1 -
1 x0, x0, x0, x0 (1) 1 f, f, f, f (1) 1 yk (1) 0 COMd

2 x0, x0, x0, x
′
0 (1) 1 f, f, f, f (1) 1 yk (2) 0 NIWId

3 x0, x0, x0, x
′
0 (1) 0 f, f, f, f (1) 1 yk (2) 0 COMe

4 x0, x0, x
⋆
0, x

′⋆
0 (2) 0 f, f, f, f (1) 1 yk (2) 0 NIWIe

5 x0, x0, x
⋆
0, x

′⋆
0 (2) 0 f, f, f, f (1) {skf,i}i yk (2) 0 COMf

6 x0, x0, x
⋆
0, x

′⋆
0 (2) 0 f, f, f, f ′ (2) {skf,i}i yk (2) 0 NIWIf

7 x0, x0, x
⋆
0, x

′⋆
1 (2) 0 f, f, f, f ′ (2) {skf,i}i yk (2) 0 FE

8 x0, x0, x
′⋆
0 , x⋆1 (2) 0 f, f, f ′, f (2) {skf,i}i yk (2) 0 NIWId,NIWIf

9 x0, x0, x
′⋆
1 , x⋆1 (2) 0 f, f, f ′, f (2) {skf,i}i yk (2) 0 FE

10 x⋆0, x
′⋆
0 , x1, x1 (2) 0 f, f ′, f, f (2) {skf,i}i yk (2) 0 NIWId,NIWIe,NIWIf

11 x⋆0, x
′⋆
1 , x1, x1 (2) 0 f, f ′, f, f (2) {skf,i}i yk (2) 0 FE

12 x′⋆0 , x⋆1, x1, x1 (2) 0 f ′, f, f, f (2) {skf,i}i yk (2) 0 NIWId,NIWIf
13 x′⋆1 , x⋆1, x1, x1 (2) 0 f ′, f, f, f (2) {skf,i}i yk (2) 0 FE
14 x′⋆1 , x⋆1, x1, x1 (2) 0 f, f, f, f (1) {skf,i}i yk (2) 0 NIWIf
15 x′⋆1 , x⋆1, x1, x1 (2) 0 f, f, f, f (1) 1 yk (2) 0 COMf

16 x′1, x1, x1, x1 (1) 0 f, f, f, f (1) 1 yk (2) 0 NIWIe
17 x′1, x1, x1, x1 (1) 1 f, f, f, f (1) 1 yk (2) 0 COMe

18 x1, x1, x1, x1 (1) 1 f, f, f, f (1) 1 yk (1) 0 NIWId
19 x1, x1, x1, x1 (1) 1 f, f, f, f (1) 1 yk (1) 1 COMd

Table 3. Hybrids for the security proof of the PA-UEAD PAFE.

– Hybrid HUEAD,0: This is the security game with challenge bit b = 0. The

master public key is mpk′ = {mpki}i∈[4], where ∀i ∈ [4] (mski,mpki,eki) ←

Setup(1λ;si) for random string si. cf ←Com(14·len;uf ), ce ←Com(1len;ue),
and cd ←Com(1len;ud) for random strings uf , ue, ud. The challenge cipher-
text is ct′ ←{cti}i∈[4], where ∀i ∈ [4] cti ← Enc(eki,x0;re,i), for some ran-
dom string re,i. The functional secret keys are sk′f = {skf,i, rf,i}i∈[4], where
∀i ∈ [4] skf,i ← FE.KeyGen(mpki,mski, fi; rki

), for random strings rf,i and
rk,i. The functional public keys are pkf = {pkf,i}i∈[4], where ∀i ∈ [4] pkf,i
←Com.Commit(skf,i; rf,i). The function output y0 ←FE.Dec(mpki,f ,skf,i,cti),
∀i ∈ [4]. πf is computed for condition (1) of relation RUAD,f and πd is com-
puted for condition (1) of relation RUAD,d.

– Hybrid HUEAD,1: This hybrid is identical to the previous one except for ce,

which is computed differently, i.e., cd ←Com.Commit(0;ud).

– Hybrid HUEAD,2: This hybrid is identical to the previous one, except for the

computation of πd. Using indices {1, 2}, πd is computed for condition (2) of
relation RUEAD,d.

– Hybrid HUEAD,3: They hybrid is identical to the previous one except for ce,

which is computed differently, i.e., cf ←Com.Commit(0;ue).

– Hybrid HUEAD,4: This hybrid is identical to the previous one, except for the

computation of πe. Using indices {1, 2}, πe is computed for condition (2) of
relation RUEAD,e.
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– Hybrid HUEAD,5: This hybrid is identical to the previous one except for cf ,

which is computed differently, i.e., cf ←Com.Commit(04·len;uf ).
– Hybrid HUEAD,6: This hybrid is identical to the previous one, except for the

computation of πf . Using indices {1, 2, 3}, πf is computed for condition (2)
of relation RUEAD,f .

– Hybrid HUEAD,7: This hybrid is identical to the previous one, except for the

computation of ct4, i.e., ct4 ←FE.Enc(ek4,x1;re,4).
– Hybrid HUEAD,8: This hybrid is identical to the previous one, except for the

computation of πf , which is computed using indices {1, 2, 4}.
– Hybrid HUEAD,9: This hybrid is identical to the previous one, except for ct3,

i.e., ct3 ←FE.Enc(ek3,x1;re,3).
– Hybrid HUEAD,10: This hybrid is identical to the previous one, except for the

computation of πd and πe which are computed using indices {3, 4}, and πf

which is computed using indices {1, 3, 4}.
– Hybrid HUEAD,11: This hybrid is identical to the previous one, except for the

computation of ct2, i.e., ct2 ←Fe.Enc(ek2,x1;re,2).
– Hybrid HUEAD,12: This hybrid is identical to the previous one, except for the

computation of πf , which is computed using indices {2, 3, 4}.
– Hybrid HUEAD,13: This hybrid is identical to the previous one, except for ct1,

i.e., ct1 ←FE.Enc(ek1,x1;re,1).
– Hybrid HUEAD,14: This hybrid is identical to the previous one, except for

the computation of πf , which is computed for condition (1) using indices
{1, 2, 3, 4}.

– Hybrid HUEAD,15: This hybrid is identical to the previous one except for cd,

which is computed differently, i.e., cd ←Com.Commit(1;uf ).
– Hybrid HUEAD,16: This hybrid is identical to the previous one, except for the

computation of πe. Using indices {1, 2, 3, 4}, πe is computed for condition (1)
of relation RUEAD,e.

– Hybrid HUEAD,17: This hybrid is identical to the previous one except for ce,

which is computed differently, i.e., ce ←Com.Commit(1;ue).
– Hybrid HUEAD,18: This hybrid is identical to the previous one, except for the

computation of πd. Using indices {1, 2, 3, 4}, πd is computed for condition (1)
of relation RUEAD,d.

– Hybrid HUEAD,19: This hybrid is identical to the previous one except for cd,

which is computed differently, i.e., cd ←Com.Commit(1;ud), which is identical
to the real game when b = 1.

[HUEAD,0 ≈ HUEAD,1] Assuming that Com is a computationally hiding commit-
ment scheme, the outputs of experiments as described in HUEAD,0 and HUEAD,1

are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment cd is computed. Let us consider an adversary ACom that interacts
with a challenger C to break the hiding property of the commitment scheme.
Also, internally, it acts as the challenger in the PAFE security game against
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an adversary AUEAD,H0−H1
that tries to distinguish between HUEAD,0 and

HUEAD,1. ACom functions as follows: it chooses to encrypt x0, executes every-
thing honestly, and forwards two stings, namely (0len) and (1len) to challenger C.
ACom receives a commitment cd, corresponding to either of the two strings above
and forwards it to AUEAD,H0−H1

alongside the honestly generated information.
AUEAD,H0−H1

outputs a bit β which ACom forwards to C. Clearly, ACom runs
in polynomial time and Advsec−PAFE(A) ≤ AdvCom−Hiding(ACom) ≤ negl(λ).
Therefore, HUEAD,0 and HUEAD,1 are computationally indistinguishable.

[HUEAD,1 ≈ HUEAD,2] Assuming that NIWId is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,1

and HUEAD,2 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πd is computed. In HUEAD,1 is computed for condition (1) of RUEAD,d using the
“real” witness for indices {1, 2, 3, 4}, whereas in HUEAD,2 is computed for con-
dition (2) of RUEAD,d using the “trapdoor” witness for indices {1, 2}. Similarly
to the previous lemma we can construct an adversary that plays the witness
indistinguishability game for NIWId, and internally acts as the challenger for
the indistinguishability game of PAFE. The advantage of the NIWI-adversary
is bound by the PAFE-adversary, and since NIWId is a non-interactive witness
indistinguishable proof system, HUEAD,1 and HUEAD,2 are computationally in-
distinguishable.

[HUEAD,2 ≈ HUEAD,3] Assuming that Com is a computationally hiding commit-
ment scheme, the outputs of experiments as described in HUEAD,2 and HUEAD,3

are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment ce is computed. The proof is similar to the one of [HUEAD,0 ≈
HUEAD,1].

[HUEAD,3 ≈ HUEAD,4] Assuming that NIWIe is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,3

and HUEAD,4 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πe is computed. In HUEAD,3 is computed for condition (1) of RUEAD,e

using the real witness using indices {1, 2, 3, 4}, whereas in HUEAD,4 is computed
for condition (2) of RUEAD,e using the indices {1, 2}. The proof is very similar
to the one of [HUEAD,1 ≈ HUEAD,2].

[HUEAD,4 ≈ HUEAD,5] Assuming that Com is a computationally hiding commit-
ment scheme, the outputs of experiments as described in HUEAD,4 and HUEAD,5

are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment cf is computed. The proof is similar to the one of [HUEAD,0 ≈
HUEAD,1].
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[HUEAD,5 ≈ HUEAD,6] Assuming that NIWIf is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,5

and HUEAD,6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πe is computed. In HUEAD,5 is computed for condition (1) of RUEAD,f using
the real witness using indices {1, 2, 3, 4}, whereas in HUEAD,6 is computed for
condition (2) of RUEAD,f using the indices {1, 2, 3}. The proof is very similar to
the one of [HUEAD,1 ≈ HUEAD,2].

[HUEAD,6 ≈ HUEAD,7] Assuming that FE is a secure functional encryption
scheme as per Definition 3, the outputs of experiments as described in HUEAD,6

and HUEAD,7 are computationally indistinguishable.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUEAD,6, the fourth compo-
nent of the ciphertext is computed as an encryption of message x0, whereas in
HUEAD,7 as an encryption of message x1. Let us consider an adversary AFE

that interacts with a challenger C to break the security of FE. Also, inter-
nally, it acts as the challenger in the PAFE security game against an adversary
AUEAD,H6−H7

that tries to distinguish between HUEAD,6 and HUAED,7. AFE

functions as follows: it chooses to encrypt x0, executes everything honestly for
indices {1, 2, 3}, and forwards the pair (x0,x1) to challenger C. AFE receives a
ciphertext ct4, corresponding to either of the two plaintexts above and forwards
it to AUEAD,H6−H7 alongside the honestly generated information. AUAD,H6−H7

outputs a bit β which AFE forwards to C. Clearly, AFE runs in polynomial time
and Advsec−PAFE(A) ≤ AdvFE−security(AFE) ≤ negl(λ). Therefore, HUEAD,6

and HUEAD,7 are computationally indistinguishable.

[H7 ≈ H8] Assuming that NIWIf is a non-interactive witness indistinguishable
proof system, the outputs of experiments as described in HUEAD,7 and HUEAD,8

are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πf is computed. In HUEAD,7 is computed for condition (2) of RUEAD,f

using the indices {1, 2, 3}, whereas in HUEAD,8 is computed for condition (2)
of RUEAD,f using the indices {1, 2, 4}. Since NIWIf is a non-interactive witness
indistinguishable proof system, HUEAD,7 and HUAED,8 are computationally in-
distinguishable.

[HUEAD,8 ≈ HUEAD,9] Assuming that FE is a secure functional encryption
scheme as per Definition 3, the outputs of experiments as described in HUEAD,8

and HUEAD,9 are computationally indistinguishable.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUAED,8, the third compo-
nent of the ciphertext is computed as an encryption of message x0, whereas in
HUEAD,9 as an encryption of message x1. The proof is very similar with the one
for [HUEAD,4 ≈ HUEAD,5].
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[HUEAD,9 ≈ HUEAD,10] Assuming that NIWId, NIWIe, NIWIf are non-interactive
witness indistinguishable proof systems, the outputs of experiments as described
in HUEAD,9 and HUEAD,10 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proofs
πd, πe, and πf and computed. In HUEAD,9 πd is computed for condition (2) of
RUEAD,d using indices {1, 2, 4}, whereas in HUEAD,10 is computed for condition
(2) of RUEAD,d using indices {1, 3, 4}. Similarly, πe is computed for condition
(2) of RUEAD,e using the indices {1, 2}, whereas in HUEAD,10 is computed for
condition (2) of RUEAD,e using indices {3, 4}. In HUEAD,9 πf is computed for
condition (2) of RUEAD,f using indices {1, 2, 4}, whereas in HUEAD,10 is com-
puted for condition (2) of RUEAD,f using the indices {1, 3, 4}. Observe that the
two hybrids are symmetrical to each other. By doing these three changes at
once we can guarantee the existence and knowledge of the respective witnesses.
Furthermore, we can argue that if there exists a PPT adversary that can distin-
guish between the two hybrids, then we can construct an adversary ANIWI that
can break at least one of NIWIf , NIWIe, or NIWId witness indistinguishability
property.

[HUEAD,10 ≈ HUEAD,11] Assuming that FE is a secure functional encryption
scheme as per Definition 3, the outputs of experiments as described in HUEAD,10

and HUEAD,11 are computationally indistinguishable.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUEAD,10, the second compo-
nent of the ciphertext is computed as an encryption of message x0, whereas in
HUEAD,11 as an encryption of message x1. The proof is similar with the one for
[HUEAD,4 ≈ HUEAD,5].

[HUEAD,11 ≈HUEAD,12] Assuming that NIWIf is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,11

and HUEAD,12 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πf is computed. In HUEAD,11 is computed for condition (2) of RUEAD,f

using the indices {1, 2, 4}, whereas in HUEAD,12 is computed for condition (2)
of RUEAD,f using the indices {2, 3, 4}. Since NIWIf is a non-interactive witness
indistinguishable proof system, HUEAD−11 and HUEAD,12 are computationally
indistinguishable.

[HUEAD,12 ≈ HUEAD,13] Assuming that FE is a secure functional encryption
scheme as per Definition 3, the outputs of experiments as described in HUEAD,12

and HUEAD,13 are computationally indistinguishable.

Proof. The only difference between the hybrids is the manner in which the chal-
lenge ciphertext is created. More specifically, in HUEAD,12, the first compo-
nent of the ciphertext is computed as an encryption of message x0, whereas in
HUEAD,13 as an encryption of message x1. The proof is very similar with the
one for [HUEAD,4 ≈ HUEAD,5].
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[HUEAD,13 ≈HUEAD,14] Assuming that NIWIf is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,13

and HUEAD,14 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which
proof πf is computed. In HUEAD,13 is computed for condition (2) of RUEAD,f

using the indices {2, 3, 4}, whereas in HUEAD,14 is computed for condition (1)
of RUAD,f using the real witness for indices {1, 2, 3, 4}. Since NIWIf is a non-
interactive witness indistinguishable proof system, HUEAD,13 and HUEAD,14 are
computationally indistinguishable.

[HUEAD,14 ≈ HUEAD,15] Assuming that Com is a computationally hiding com-
mitment scheme, the outputs of experiments as described in HUEAD,14 and
HUEAD,15 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment cf is computed. The proof is similar to the one of [HUEAD,0 ≈
HUEAD,1].

[HUEAD,15 ≈ HUEAD,16] Assuming that NIWIe is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,15

and HUEAD,16 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πe is computed. In HUEAD,15 is computed for condition (2) of RUEAD,e using
the trapdoor witness with indices {3, 4}, whereas HUEAD,16 is computed for
condition (1) of RUEAD,d using the real witness for indices {1, 2, 3, 4}. The proof
is very similar to the one of [HUEAD,1 ≈ HUEAD,2].

[HUEAD,16 ≈ HUEAD,17] Assuming that Com is a computationally hiding com-
mitment scheme, the outputs of experiments as described in HUEAD,16 and
HUEAD,17 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment ce is computed. The proof is similar to the one of [HUEAD,0 ≈
HUEAD,1].

[HUEAD,17 ≈HUEAD,18] Assuming that NIWId is a non-interactive witness indis-
tinguishable proof system, the outputs of experiments as described in HUEAD,17

and HUEAD,18 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which proof
πd is computed. InHUEAD,17 is computed for condition (2) of RUEAD,d using the
indices {3, 4}, whereas in HUEAD,18 is computed for condition (1) of RUEAD,d

using the real witness with indices {1, 2, 3, 4}.The proof is very similar to the
one of [HUEAD,1 ≈ HUEAD,2].

[HUEAD,18 ≈ HUEAD,19] Assuming that Com is a computationally hiding com-
mitment scheme, the outputs of experiments as described in HUEAD,18 and
HUEAD,19 are computationally indistinguishable.
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Proof. The only difference between the two hybrids is the manner in which the
commitment cd is computed. The proof is similar to the one of [HUEAD,0 ≈
HUEAD,1].

(Auditability). For an adversary to break the auditability property for PAFE,
it needs to provide the respective convincing proofs while the output of the
decryption algorithm is not the respective function output. We now consider all
eight possible combinations for accepting proofs πf , πe, πd and show that in all
possible cases the provided function output is the legitimate one.

1. Condition (1) of relation RUEAD,f , condition (1) of relation RUEAD,e, and
condition (1) of relation RUEAD,d are satisfied. Now, for all four instances
(mpkj ,mskj)← FE.Setup(1λ; sj), skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rf,j), pkf,j
← Com.Commit(skf,j ; rf,j), ctj = FE.Enc({ekj ,mpkj},x;re,j), and moreover
FE.Dec(mpkk, fk,skf,k, ctk)=yk, Informally, as all keys are generated hon-
estly, x is encrypted in all {ct}i∈[4] and all decryptions output y. From the
public auditability definition, PA-UEAD holds.

2. Condition (1) of relation RUEAD,f , condition (1) of relation RUEAD,e, and
condition (2) of relation RUEAD,d are satisfied. In a similar manner to case
1 and the PA-UAD one, since ∀j ∈ [4] : ctj = FE.Enc({ekj ,mpkj},x;re,j),
(mpkj ,mskj) ← FE.Setup(1λ; sj), pkf,j ← Com.Commit(skf,j ; rf,j), skf,j ←
FE.KeyGen(mpkj ,mskj ,fj ;rf,j) it therefore must be that the decryption out-
put PAFE.Dec({mpki,fi,skf,i,cti}i∈[4])=yk. From πd we get that at least three
decryptions output yf ,which combined with x being encrypted to all cipher-
texts guarantees PA-UEAD.

3. Condition (1) of relation RUEAD,f , condition (2) of relation RUEAD,e, and
condition (1) of relation RUEAD,d are satisfied. This is an impossible case as
πe proves that ce ←Com(0len;ue) and πd contrary proves ce ←Com(1len;ue).

4. Condition (1) of relation RUEAD,f , condition (2) of relation RUEAD,e, and
condition (2) of relation RUEAD,d are satisfied. This concretely states that
∀j : (mpkj ,mskj)← FE.Setup(1λ; sj), skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rf,j),
pkf,j ← Com.Commit(skf,j ; rf,j), for two ctj = FE.Enc({ekj ,mpkj},x;re,j),
and for three FE.Dec(mpkk, fk,skf,k, ctk)=yk. Informally, in this case all
keys, two ciphertexts and three decryptions are generated honestly. By the
pigeonhole principle at least one decryption will use a ciphertext whose index
was used as a witness in the generation of πe. This, combined with the fact
that three decryptions (all using honestly created keys) return the same
function output guarantees the PA-UEAD property.

5. Condition (2) of relation RUEAD,f , condition (1) of relation RUEAD,e, and
condition (1) of relation RUEAD,d are satisfied. This is an impossible case
as πf proves that cf ←Com.Commit({ski}i∈[4];uf ) and πe contrary proves

cf ←Com.Commit(1len;ue).

6. Condition (2) of relation RUEAD,f , condition (1) of relation RUEAD,e, and
condition (2) of relation RUEAD,d are satisfied. This is an impossible case
since on one hand πf proves that cf ←Com({ski}i∈[4];uf ) and πe on the

other proves cf ←Com(1len;ue).
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7. Condition (2) of relation RUEAD,f , condition (2) of relation RUEAD,e, and
condition (1) of relation RUEAD,d are satisfied. This is an impossible case as
πe proves that ce ←Com(0len;ue) and πd contrary proves ce ←Com(1len;ue).

8. Condition (2) of relation RUEAD,f , condition (2) of relation RUEAD,e, and
condition (2) of relation RUEAD,d are satisfied. In this case πf ensures that
∃ y ∈ Xλ such that ∀ i ∈ [4]: y ← FE.Dec(mpki,fi,skf,i,cti). This combined
with the pigeonhole principle about the ciphertexts and the decryptions (sim-
ilarly to case 4), satisfies the PA-UEAD property.

Importantly, in all cases above where PA-UEAD is achieved, it is not restricted
to a single function. Recall that public auditability states that the decryption
returns a function output, implying consistency of the encryptor’s input. In
PA-UAD it is trivial since the encryptor is trusted and always encrypts x. In
PA-UEAD though, this derives from the combination of either satisfied condition
for RUEAD,d and either a combination of RUEAD,f condition (1) with any of the
RUEAD,e conditions, or a combination of RUEAD,f condition (2) with RUEAD,e

condition (2). Specifically, for every function there exist at least three instances
that return the same function output for f and from which at least one of them
corresponds to the function evaluation of an encryptor-chosen plaintext x.

E Proof of Theorem 5

Proof. (Security) We first consider the cases where the adversary follows a
strategy specified in cases (⋆) or (⋆⋆) in Theorem 1. The general case analysis
applies to our MIFE construction and thus no PPT adversary APAFE cannot
have more than 1

2 probability of winning its game, in these cases.

Case (i): Now we proveM secure by contraposition for the remaining case. We
consider a PPT adversary APAFE that has non-negligible advantage ϵ of winning
the IND-Security game forM. We will construct an adversary AMIFE that utilizes
APAFE and has also non-negligible advantage in winning the IND-security game
forM′.

– Initialization: AMIFE receives mpk from the challenger C, samples j⋆ ←$ [m],
initializes counter = 0, initializes a table Tenc, samples rs ← {0, 1}

λ, computes
cd = g⊤ · hud , samples b′ ← {0, 1}, and forwards (mpk,cd) to APAFE.

– Encryption queries: When APAFE issues a QEnc(x0,x1) query to AMIFE, the
latter issues a QEnc(xj ,xj) query to C and increments counter by 1. xj = x0

for counter < j⋆, and xj = x1 for counter > j⋆. For counter = j⋆ AMIFE

forwards the query to C without any alteration. C returns a ciphertext ct,
which AMIFE forwards to APAFE.

– Functional secret key queries: WhenAPAFE issues a QSKeyGen query toAMIFE,

the latter forwards the query to C, who responds with skf=
(

(Σn
i=1si·wi, Σ

n
i=1ti·

wi)
)

. A then checks if a QPKeyGen query has been issued for f . If not, it
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samples rf ←$ {0, 1}λ and computes pkf=(gΣ
n
i=1si·wi ·hrf ,hΣn

i=1ti·wi ·grf ). AFE

forwards (skf ,pkf ) to APAFE.

– Functional public key queries: When APAFE issues a QPKeyGen(f) query to
AMIFE, the latter checks whether ∃ct associated with a QEnc(x0, x1) such
that f(x0) ̸= f(x1). If so, AMIFE samples zf ←$ {0, 1}λ and computes pkf=
(gzf , hzf ). Otherwise, AMIFE forwards a QSKeyGen(f) query to C, who re-
sponds with skf=(Σn

i=1si · wi, Σ
n
i=1ti · wi). AMIFE samples rf ←$ {0, 1}λ, and

computes pkf = (gΣ
n
i=1si·wi · hrf , hΣn

i=1ti·wi · grf ). In any case AMIFE returns
pkf to APAFE.

– Decryption queries: When APAFE issues a QDec(ct, f) query to AMIFE, the
latter assigns y← f(xj) and πd ← NIWId.Prove(mpk,⊤,⊥,ud,⊥,⊥,⊥,cd). AMIFE

forwards (y,πd) to APAFE.

– Finalization: APAFE outputs a bit b′ which AMIFE forwards to C.

AMIFE runs in polynomial-time as it runs the probabilistic polynomial-time
(PPT) adversary APAFE and additionally performs polynomial-time operations
(i.e. exponentiations and multiplications). The differences between the view
provided by AMIFE in the reduction and the view provided by a challenger
while executing the real security game for PAFE lie in the computation of the
functional public keys, the ciphertexts, the function outputs, the commitment
cd, and the proofs πd. Our goal is to prove that Advsec−MIFE

(

AMIFE(1
λ)
)

≤

Advsec−PAFE
(

APAFE(1
λ)
)

+ negl(λ).
We can use the hybrid analysis of Theorem 1. From the employed MIFE and

NIZK, we just need to argue about the indistinguishability of the hybrids involv-
ing the changes in the commitments cd and pkf . The former follows the same
distribution as in the game execution so the two hybrids are indistinguishable.
The same holds for the functional public keys. Last, remember that the choice
of j⋆ induces a polynomial loss in the advantage of AMIFE.

Additionally, we consider the strategy of APAFE that corresponds to case
(ii) in Theorem 1. Assuming the existance of a PPT adversary APAFE,(ii) that
wins in its game with more than negligible advantage ϵ, we construct a PPT
adversary AMIFE,(ii) that utilizes APAFE,(ii) to win in its game with also non-
negligible advantage.

– Initialization: AMIFE,(ii) receives mpk = (G, g, h, {hi}i∈[n]) from C, samples

rd ←$ {0, 1}λ, computes cd = g⊤·hrd and runsAPAFE,(ii) on input (1λ,mpk, cd).
– Encryption queries: When APAFE,(ii) issues an encryption query, AMIFE,(ii) for-

wards it to C, receives the ciphertext cti and gives it to APAFE,(ii).

– Functional secret key queries: When APAFE,(ii) issues a QSKeyGen query to
AMIFE,(ii), the latter forwards the query to C, who responds with skf . AFE

then checks if a QPKeyGen query has been issued for f . If not, it samples
rf ←$ {0, 1}λ and computes pkf ← Com.Commit(skf ; rf ), AMIFFE(ii) forwards
(skf ,pkf ) to APAFE(ii).

– Functional public key queries: When APAFE,(ii) issues a query, AMIFE,(ii) sam-

ples rf ←$ {0, 1}λ and computes pkf= (grf , hrf ) and forwards it to APAFE,(ii).

46



– Decryption queries: When APAFE issues a QDec(ct, f) query to AFE, the lat-
ter assigns y ← f(xj) and πd ← NIZKd.Prove(mpk,{wi}i∈[n],⊥,pkf ,ct,y). AFE

forwards (y,πd) to APAFE.
– Finalization: APAFE,(ii) sends b

′ to AMIFE,(ii) who forwards it to C.

In this case we argue that the view of APAFE,(ii) is indistinguishable from the
real game. The only difference lies in the computation of the commitment cd
and the functional public keys. First, we state that cd follows the same distri-
bution in both cases as it is randomly sampled. Therefore, we argue that the
indistinguishability of the two views reduces to the indistinguishability of the
functional public keys. Similarly to cd they follow the same distribution, as they
are also randomly sampled in both cases. From this analysis we conclude that
Advsec−MIFE(AMIFE,(ii)) = Advsec−PAFE(APAFE,(ii)), which is non-negligible.

(Auditability) Similarly to Theorem 1 for an adversary to break the auditabil-
ity property they need to violate either the NIZK or the commitment condition.
From the soundness property of the employed NIZK no PPT adversary can gen-
erate a convincing proof without knowing the witnesses and since (i) the symbol
“⊤” is not in the domain of the msk and (ii) the domain of the msk is super-
polynomially big, the probability of a PPT adversary guessing it is negligible.
Therefore, no PPT adversary can break our PA-UD MIFE auditability property.

References

1. Delloite-US. https://www2.deloitte.com/us/en.html
2. Facebook Community Standards. https://www.facebook.com/communitystandards
3. KPMG-CN. https://home.kpmg/cn/en/home.html
4. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-

product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology - ASIACRYPT 2019. Lecture Notes in Computer Science, vol.
11923, pp. 552–582. Springer (2019). https://doi.org/10.1007/978-3-030-34618-
8 19, https://doi.org/10.1007/978-3-030-34618-8 19

5. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption
from pairings. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO
2021. Lecture Notes in Computer Science, vol. 12828, pp. 208–238. Springer (2021).
https://doi.org/10.1007/978-3-030-84259-8 8, https://doi.org/10.1007/978-3-030-
84259-8 8

6. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nis-
sim, K., Waters, B. (eds.) TCC 2021. Lecture Notes in Computer Science, vol.
13043, pp. 224–255. Springer (2021). https://doi.org/10.1007/978-3-030-90453-1 8,
https://doi.org/10.1007/978-3-030-90453-1 8
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