Skip to main content

Logic Aggregators and Their Implementations

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13890))

  • 357 Accesses

Abstract

In this paper we present necessary properties of logic aggregators and compare their major implementations. If decision making includes the identification of a set of alternatives followed by the evaluation of alternatives and selection of the best alternative, then evaluation must be based on graded logic aggregation. The resulting analytic framework is a graded logic which is a seamless generalization of Boolean logic, based on analytic models of graded simultaneity (various forms of conjunction), graded substitutability (various forms of disjunction) and complementing (negation). These basic logic operations can be implemented in various ways, including means, t-norms/conorms, OWA, and fuzzy integrals. Such mathematical models must be applicable in all regions of the unit hypercube \([0,1]^{n}\). In order to be applicable in various areas of decision making, the logic aggregators must be consistent with observable patterns of human reasoning, supporting both formal logic and semantic aspects of human reasoning. That creates a comprehensive set of logic requirements that logic aggregators must satisfy. Various popular aggregators satisfy these requirements to the extent investigated in this paper. The results of our investigation clearly show the limits of applicability of the analyzed aggregators in the area of decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, New York (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  2. Beliakov, G., Bustince Sola, H., Calvo Sanchez, T.: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol. 329. Springer, New York (2016). https://doi.org/10.1007/978-3-319-24753-3

  3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Dujmović, J.: Soft Computing Evaluation Logic. Wiley and IEEE Press (2018)

    Google Scholar 

  5. Miller, J.R., III.: Professional Decision-Making. Praeger, New York (1970)

    Google Scholar 

  6. Belton, V., Stewart, T.J.: Multiple Criteria Decision Analysis: An Integrated Approach. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  7. Torra, V., Narukawa, Y.: Modeling Decisions. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-68791-7

    Book  MATH  Google Scholar 

  8. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  9. Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications. Springer, New York (1996). https://doi.org/10.1007/978-94-015-8702-0

  10. Dujmović, J.: Graded logic aggregation. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds.) MDAI 2018. LNCS (LNAI), vol. 11144, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00202-2_1

    Chapter  Google Scholar 

  11. Dujmović, J.: Weighted conjunctive and disjunctive means and their application in system evaluation. J. Univ. Belgrade, EE Dept. Ser. Math. Phys. 483, 147–158 (1974)

    Google Scholar 

  12. Dujmović, J.: Two integrals related to means. J. Univ. Belgrade EE Dept. Ser. Math. Phys. 412–460, 231–232 (1973)

    Google Scholar 

  13. Dujmović, J.: Weighted compensative logic with adjustable threshold andness and orness. IEEE Trans. Fuzzy Syst. 23(2), 270–290 (2015)

    Google Scholar 

  14. Dujmović, J., Beliakov, G.: Idempotent weighted aggregation based on binary aggregation trees. Int. J. Intell. Syst. 32(1), 31–50 (2017)

    Article  Google Scholar 

  15. Dujmović, J., Larsen, H.L.: Generalized conjunction/disjunction. Int. J. Approx. Reason. 46, 423–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Google Scholar 

  17. Yager, R.R.: Generalized OWA aggregation operators. Fuzzy Optim. Decis. Making 3, 93–107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yager, R.R.: On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 50, 1279–1286 (2009)

    Google Scholar 

  19. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, London (2003 and 2010)

    Google Scholar 

  20. Dujmović, J.: Implicative weights as importance quantifiers in evaluation criteria. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds.) MDAI 2018. LNCS (LNAI), vol. 11144, pp. 193–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00202-2_16

    Chapter  Google Scholar 

  21. Dujmović, J.: Graded logic for decision support systems. Int. J. Intell. Syst. 34, 2900–2919 (2019)

    Article  Google Scholar 

  22. Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12, 153–166 (1997)

    Article  MATH  Google Scholar 

  23. Liu, X., Chen, L.: On the properties of parametric geometric OWA operator. Int. J. Approx. Reason. 35, 163–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thole, U., Zimmermann, H.-J., Zysno, P.: On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy Sets Syst. 2, 167–180 (1979)

    Article  MATH  Google Scholar 

  25. Zysno, P.: One class of operators for the aggregation of fuzzy sets. In: EURO III Congress, Amsterdam (1979)

    Google Scholar 

  26. Zimmermann, H.-J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets Syst. 4, 37–51 (1980)

    Article  MATH  Google Scholar 

  27. Kovalerchuk, B., Taliansky, V.: Comparison of empirical and computed values of fuzzy conjunction. Fuzzy Sets Syst. 46, 49–53, North-Holland (1992)

    Google Scholar 

  28. Ralescu, A.L., Ralescu, D.A.: Extensions of fuzzy aggregation. Fuzzy Sets Syst. 86, 321–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carbonell, M., Mas, M., Mayor, G.: On a class of monotonic extended OWA operators. In: Proc. IEEE Fuzzy (1997)

    Google Scholar 

  30. Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73 (1996)

    Article  Google Scholar 

  31. Yager, R.R.: Including importances in OWA aggregations using fuzzy systems modeling. IEEE Trans. Fuzzy Syst. 6(2), 286–294 (1998)

    Article  Google Scholar 

  32. Beliakov, G., James, S., Mordelová, J., Rückschlossová, T., Yager, R.R.: Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst. 161, 2227–2242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dutta, B., Figueira, J.R., Das, S.: On the orness of Bonferroni mean and its variants. J. Intell. Syst. 1–31 (2019). https://doi.org/10.1002/int.22124

  34. Blanco‐Mesa, F., León‐Castro, E., Merigó, J.M., Xu, Z.S.: Bonferroni means with induced ordered weighted average operators. Int. J. Intell. Syst. 34, 3–23 (2019). https://doi.org/10.1002/int.22033

  35. Marichal, J.L.: Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur. J. Oper. Res. 155(3), 771–791 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. O’Hagan, M.: Fuzzy decision aids. In: Proceedings of 21st Annual Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 624–628. IEEE and Maple Press (1987) (published in 1988)

    Google Scholar 

  37. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89, 445–456 (1996)

    Article  MATH  Google Scholar 

  38. Dujmović, J.: Interpretability and explainability of LSP evaluation criteria. In: Proceedings of the 2020 IEEE World Congress on Computational Intelligence, 978-1-7281-6932-3/20, paper F-22042, July 2020

    Google Scholar 

  39. Torra, V.: Andness directedness for operators of the OWA and WOWA families. Fuzzy Sets Syst. 414, 28–37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dujmović, J., Torra, V.: Properties and comparison of andness-characterized aggregators. Int. J. Intell. Syst. 36(3), 1366–1385 (2021)

    Article  Google Scholar 

  41. Dujmović, J., Torra, V.: Aggregation functions in decision engineering: ten necessary properties and parameter-directedness. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 173–181. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_21

    Chapter  Google Scholar 

  42. Dujmović, J.: Andness-directed iterative OWA aggregators. In: Torra, V., Narukawa, Y. (eds.) MDAI 2021. LNCS (LNAI), vol. 12898, pp. 3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85529-1_1

    Chapter  Google Scholar 

  43. Dujmović, J.: Numerical comparison of idempotent andness-directed aggregators. In: Torra, V., Narukawa, Y. (eds.) MDAI 2021. LNCS (LNAI), vol. 12898, pp. 67–77. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85529-1_6

    Chapter  Google Scholar 

  44. Torra, V.: Andness directedness for t-Norms and t-Conorms. Mathematics 10, 1598 (2022). https://doi.org/10.3390/math10091598

    Article  Google Scholar 

  45. Dujmović, J.: Preferential neural networks. In: Antognetti, P., Milutinović, V. (eds.) Chapter 7 in Neural Networks - Concepts, Applications, and Implementations. Prentice-Hall Advanced Reference Series, vol. II, pp. 155–206. Prentice-Hall, Upper Saddle River (1991)

    Google Scholar 

  46. Dujmović, J.: Andness and orness as a mean of overall importance. In: Proceedings of the IEEE World Congress on Computational Intelligence, 10–15 June 2012, Brisbane, Australia, pp. 83–88 (2012)

    Google Scholar 

  47. Dujmović, J., Tomasevich, D.: Experimental analysis and modeling of human conjunctive logic aggregation. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy, pp. 1–8 (2022). https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882665

  48. Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dombi, J.A.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debr. 10, 69–81 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  51. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, London (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozo Dujmović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dujmović, J., Torra, V. (2023). Logic Aggregators and Their Implementations. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2023. Lecture Notes in Computer Science(), vol 13890. Springer, Cham. https://doi.org/10.1007/978-3-031-33498-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33498-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33497-9

  • Online ISBN: 978-3-031-33498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics