Skip to main content

Conformal Prediction for Accuracy Guarantees in Classification with Reject Option

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13890))

  • 633 Accesses

Abstract

A standard classifier is forced to predict the label of every test instance, even when confidence in the predictions is very low. In many scenarios, it would, however, be better to avoid making these predictions, maybe leaving them to a human expert. A classifier with that alternative is referred to as a classifier with reject option. In this paper, we propose an algorithm that, for a particular data set, automatically suggests a number of accuracy levels, which it will be able to meet perfectly, using a classifier with reject option. Since the basis of the suggested algorithm is conformal prediction, it comes with strong validity guarantees. The experimentation, using 25 publicly available two-class data sets, confirms that the algorithm obtains empirical accuracies very close to the requested levels. In addition, in an outright comparison with probabilistic predictors, including models calibrated with Platt scaling, the suggested algorithm clearly outperforms the alternatives.

The authors acknowledge the Swedish Knowledge Foundation, Jönköping University, and the industrial partners for financially supporting the research through the AFAIR project with grant no. 20200223, as part of the research and education environment SPARK at Jönköping University. Helena Löfström is a PhD student in the Industrial Graduate School in Digital Retailing (INSiDR) at the University of Borås, funded by the Swedish Knowledge Foundation, grant no. 20160035.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16(1), 41–46 (1970)

    Article  MATH  Google Scholar 

  4. Guan, H., Zhang, Y., Cheng, H.D., Tang, X.: Bounded-abstaining classification for breast tumors in imbalanced ultrasound images. Int. J. Appl. Math. Comput. Sci. 30(2), 325–336 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  6. Hamid, K., Asif, A., Abbasi, W., Sabih, D., Minhas, F.U.A.A.: Machine learning with abstention for automated liver disease diagnosis. In: 2017 International Conference on Frontiers of Information Technology (FIT), pp. 356–361 (2017)

    Google Scholar 

  7. Hanczar, B., Dougherty, E.R.: Classification with reject option in gene expression data. Bioinform. 24(17), 1889–1895 (2008)

    Article  Google Scholar 

  8. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Statist. 34(4), 709–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johansson, U., Gabrielsson, P.: Are traditional neural networks well-calibrated? In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

    Google Scholar 

  10. Li, M., Sethi, I.K.: Confidence-based classifier design. Pattern Recogn. 39(7), 1230–1240 (2006)

    Article  MATH  Google Scholar 

  11. Linusson, H., Johansson, U., Boström, H., Löfström, T.: Classification with reject option using conformal prediction. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 94–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_8

    Chapter  Google Scholar 

  12. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: ICML, pp. 625–632 (2005)

    Google Scholar 

  13. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. Tools Artif. Intell. 18, 315–330 (2008)

    Google Scholar 

  14. Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence machines for regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 345–356. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36755-1_29

    Chapter  Google Scholar 

  15. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  16. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Mach. Learn. 52(3), 199–215 (2003)

    Article  MATH  Google Scholar 

  17. Sayyad Shirabad, J., Menzies, T.: The PROMISE Repository of Software Engineering Databases. University of Ottawa, Canada, School of IT and Engineering (2005)

    Google Scholar 

  18. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer-Verlag, New York, Inc (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansson, U., Löfström, T., Sönströd, C., Löfström, H. (2023). Conformal Prediction for Accuracy Guarantees in Classification with Reject Option. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2023. Lecture Notes in Computer Science(), vol 13890. Springer, Cham. https://doi.org/10.1007/978-3-031-33498-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33498-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33497-9

  • Online ISBN: 978-3-031-33498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics