Skip to main content

Data Augmentation by Fourier Transformation for Class-Imbalance: Application to Medical Image Quality Assessment

  • Conference paper
  • First Online:
Mitosis Domain Generalization and Diabetic Retinopathy Analysis (MIDOG 2022, DRAC 2022)

Abstract

Diabetic retinopathy (DR) is a common ocular disease in diabetic patients. In DR analysis, doctors first need to select excellent-quality images of ultra wide optical coherence tomography imaging (UW-OCTA). Only high-quality images can be used for lesion segmentation and proliferative diabetic retinopathy (PDR) detection. In practical applications, UW-OCTA has a small number of images with poor quality, so the dataset constructed from UW-OCTA faces the problem of class-imbalance. In this work, we employ data enhancement strategy and develop a loss function to alleviate class-imbalance. Specifically, we apply Fourier Transformation to the poor quality data with limited numbers, thus expanding this category data. We also utilize characteristics of class-imbalance to improve the cross-entropy loss by weighting. This method is evaluated on DRAC2022 dataset, we achieved Quaratic Weight Kappa of 0.7647 and AUC of 0.8458, respectively.

Z. Wu and Y. Chen—The two authors have equal contributions to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, J.F., et al.: Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol. Retina 3(4), 350–361 (2019)

    Article  Google Scholar 

  2. Zhang, Q., Rezaei, K.A., Saraf, S.S., Chu, Z., Wang, F., Wang, R.K.: Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant. Imaging Med. Surg. 8(8), 743 (2018)

    Article  Google Scholar 

  3. Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6

    Chapter  Google Scholar 

  4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  5. Liu, R., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)

    Article  Google Scholar 

  6. Sheng, B., et al.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health 10, 971943 (2022)

    Article  Google Scholar 

  7. Saha, S.K., Fernando, B., Cuadros, J., Xiao, D., Kanagasingam, Y.: Automated quality assessment of colour fundus images for diabetic retinopathy screening in telemedicine. J. Digit. Imaging 31(6), 869–878 (2018). https://doi.org/10.1007/s10278-018-0084-9

    Article  Google Scholar 

  8. Niemeijer, M., Abramoff, M.D., van Ginneken, B.: Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med. Image Anal. 10(6), 888–898 (2006)

    Article  Google Scholar 

  9. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  10. Alejo, R., Sotoca, J.M., Valdovinos, R.M., Toribio, P.: Edited nearest neighbor rule for improving neural networks classifications. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6063, pp. 303–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13278-0_39

    Chapter  Google Scholar 

  11. Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE-IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291, 184–203 (2015)

    Article  Google Scholar 

  12. Lin, W.-C., Tsai, C.-F., Ya-Han, H., Jhang, J.-S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

    Article  Google Scholar 

  13. Tsai, C.-F., Lin, W.-C., Ya-Han, H., Yao, G.-T.: Under-sampling class imbalanced datasets by combining clustering analysis and instance selection. Inf. Sci. 477, 47–54 (2019)

    Article  Google Scholar 

  14. Yao, H., Hu, X., Li, X.: Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation. arXiv preprint arXiv:2201.08657 (2022)

  15. Yu, F.L., Sun, J., Li, A., Cheng, J., Wan, C., Liu, J.: Image quality classification for DR screening using deep learning. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 664–667. IEEE (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  18. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

Download references

Acknowledgements

Research supported by National Natural Science Foundation of China (62271149) and Fujian Provincial Natural Science Foundation project (2021J02019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Chen, Y., Zhang, X., Huang, L. (2023). Data Augmentation by Fourier Transformation for Class-Imbalance: Application to Medical Image Quality Assessment. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33658-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33657-7

  • Online ISBN: 978-3-031-33658-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics