Skip to main content

An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images

  • Conference paper
  • First Online:
Mitosis Domain Generalization and Diabetic Retinopathy Analysis (MIDOG 2022, DRAC 2022)

Abstract

Diabetic retinopathy (DR) is a complication of diabetes, and one of the major causes of vision impairment in the global population. As the early-stage manifestation of DR is usually very mild and hard to detect, an accurate diagnosis via eye-screening is clinically important to prevent vision loss at later stages. In this work, we propose an ensemble method to automatically grade DR using ultra-wide optical coherence tomography angiography (UW-OCTA) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022. First, we adopt the state-of-the-art classification networks, i.e., ResNet, DenseNet, EfficientNet, and VGG, and train them to grade UW-OCTA images with different splits of the available dataset. Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions. During the training process, we also investigate the multi-task learning strategy, and add an auxiliary classification task, the Image Quality Assessment, to improve the model performance. Our final ensemble model achieved a quadratic weighted kappa (QWK) of 0.9346 and an Area Under Curve (AUC) of 0.9766 on the internal testing dataset, and the QWK of 0.839 and the AUC of 0.8978 on the DRAC challenge testing dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Yuhanhani/DR-Grading-DRIMGA-.git.

References

  1. Wang, W., Lo, ACY.: Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 19(6), 1816 (2018). https://doi.org/10.3390/ijms19061816

  2. Mookiah, M.R.K., Acharya, U.R.A., Chua, C.K., Lim, C.M., Ng, E.Y.K., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013). https://doi.org/10.1016/j.compbiomed.2013.10.007

    Article  Google Scholar 

  3. Overview, Diabetic Retinopathy. https://www.nhs.uk/conditions/diabetic-retinopathy/

  4. Khalili Pour, E., Rezaee, K., Azimi, H., et al.: Automated machine learning-based classification of proliferative and non-proliferative diabetic retinopathy using optical coherence tomography angiography vascular density maps. Graefes Arch. Clin. Exp. Ophthalmol. (2022). https://doi.org/10.1007/s00417-022-05818-z

    Article  Google Scholar 

  5. Abdelsalam, M., Zahran, M.A.: A Novel approach of diabetic retinopathy early detection based on multifractal geometry analysis for OCTA macular images using support vector machine, pp. 22844–22858. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3054743

  6. Selvathi, D., Suganya, K.: Support vector machine based method for automatic detection of diabetic eye disease using thermal images. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), pp. 1–6 (2019). https://doi.org/10.1109/ICIICT1.2019.8741450

  7. Alzami, F., et al.: Diabetic retinopathy grade classification based on fractal analysis and random forest. In: 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 272–276 (2019). https://doi.org/10.1109/ISEMANTIC.2019.8884217

  8. Eladawi, N., et al.: Early signs detection of diabetic retinopathy using optical coherence tomography angiography scans based on 3D multi-path convolutional neural network. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1390–1394 (2019). https://doi.org/10.1109/ICIP.2019.8803031

  9. Abdelmaksoud, E., et al.: Automatic diabetic retinopathy grading system based on detecting multiple retinal lesions. IEEE Access. 9, 15939–15960 (2021). https://doi.org/10.1109/ACCESS.2021.3052870

  10. Heisler, M. et al.: Ensemble deep learning for diabetic retinopathy detection using optical coherence tomography angiography. Transl. Vision Sci. Technol. 9(20), 15939–15960 (2021). https://doi.org/10.1167/tvst.9.2.20

  11. Ryu, G., et al.: A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-021-02479-6

  12. Dai, L., Wu, L., Li, H., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021). https://doi.org/10.1038/s41467-021-23458-5

    Article  Google Scholar 

  13. Liu, R., Wang, X., Wu, Q., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022). https://doi.org/10.1016/j.patter.2022.100512

    Article  Google Scholar 

  14. Sheng, B., Chen, X., Li, T., Ma, T., Yang, Y., Bi, L., Zhang, X.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health (2022). https://doi.org/10.3389/fpubh.2022.971943

    Article  Google Scholar 

  15. SVision. https://svisionimaging.com/index.php/en_us/home/

  16. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_10

    Chapter  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. CoRR (2015). arXiv:1512.03385

  18. Huang, G., Liu, Z., Maaten, L., Weinberger, K.: Densely Connected Convolutional Networks. CoRR(2016). arXiv:1608.06993

  19. Tan, M., Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. CoRR(2019). arXiv:1905.11946

  20. Simonyan, K., Zisserman, A: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015). arxiv:1409.1556

  21. Dhodapkar, R.M., et al.: Deep learning for quality assessment of optical coherence tomography angiography images. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-17709-8

    Article  Google Scholar 

  22. Jin, K., et al.: Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmologica. 100(2), 512–520 (2021). https://doi.org/10.1111/aos.14928

    Article  Google Scholar 

  23. Padmasini, N. et al.: Automated detection of multiple structural changes of diabetic macular oedema in SDOCT retinal images through transfer learning in CNNs. IET Image Process. 14(16), 4067–4075 (2021). https://doi.org/10.1049/iet-ipr.2020.0612

  24. Le, D., et al.: Transfer learning for automated OCTA detection of diabetic retinopathy. Transl. Vision Sci. Technol. 9(2) (2020). https://doi.org/10.1167/tvst.9.2.35

  25. Pham, K.: Ensemble learning-based classification models for slope stability analysis. CATENA 196 (2021). https://doi.org/10.1016/j.catena.2020.104886

  26. Mu, X., Watta, P., Hassoun, M.: Analysis of a plurality voting-based combination of classifiers. Neural Process. Lett. 29, 89–107 (2009)

    Article  Google Scholar 

  27. Ruder, S.: An Overview of Multi-Task Learning in Deep Neural Networks. CoRR (2017). arXiv:1706.05098

  28. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). CVPR.2009.5206848

    Google Scholar 

  29. Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Bourigault, E., et al.: Multimodal PET/CT tumour segmentation and prediction of progression-free survival using a full-scale UNet with attention. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. LNCS, vol. 13209, pp. 189–201. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98253-9_18

  31. Liu, S., et al.: Auto-Lambda: Disentangling Dynamic Task Relationships. CoRR (2022). arxiv:2202.03091

  32. Fifty, C., et al.: Efficiently Identifying Task Groupings for Multi-Task Learning. CoRR (2021). arxiv:2109.04617

  33. Ruder, S.: An Overview of Multi-Task Learning in Deep Neural Networks. CoRR (2017). arxiv:1706.05098

  34. Sheng, B., et al.: Diabetic retinopathy analysis challenge 2022. In: 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022) (2022). https://doi.org/10.5281/zenodo.6362349

Download references

Acknowledgment

The authors acknowledge the DRAC2022 challenge for available UW-OCTA images for this study [34]. The authors would like to thank Dr. Le Zhang from University of Oxford for helpful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhan Zheng or Bartłomiej W. Papież .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Wu, F., Papież, B.W. (2023). An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33658-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33657-7

  • Online ISBN: 978-3-031-33658-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics