Skip to main content

Work Disability Risk Prediction with Text Classification of Medical Reports

  • Conference paper
  • First Online:
Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) (ACR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 700))

Included in the following conference series:

Abstract

Due to digitalization, more and more data on an individual’s well-being is available in various repositories owned by different organizations. Intelligent data processing methods such as machine learning, enable efficient and accurate value creation from data. This paper addresses the problem of how to process big and mostly unstructured data to predict the work disability risk of an individual. Currently, the best data for predicting disability risk of an individual comes from health and employment records. However, no simple indicator can be reliably used to detect the risk. In our work, we present a ML model for assessing the risk of losing work ability based on anonymized medical reports of an occupational health care company. Our models are created using the ULMFit toolset and they reach accuracy of 72 % in a two class case and 65% in a three class case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD: Sickness, disability and work: breaking the barriers. OECD Publishing, Paris (2010). https://doi.org/10.1787/9789264088856-en

  2. Rantala, J., Hietaniemi, M., Nyman, H., Laaksonen, M., Kuivalainen, S.: Työkyvyttömyyseläkkeensaajien eläketurva ja toimeentulo 2000-luvulla. Finnish Centre for Pensions, Helsinki (2017). ISBN 978-951-691-269-4

    Google Scholar 

  3. Finnish Centre for Pensions: Earnings-related pension recipients in Finland 2017. Helsinki: Finnish Centre for Pensions (2018). ISSN 2343-3558

    Google Scholar 

  4. Finnish Centre for Pensions: database. Available: https://tilastot.etk.fi/pxweb/fi/ETK/?rxid=a8cde648-be6c-4fb2-bf13667849df9069 Accessed 13 Jan. 2020

  5. Pomaki, G., Franche, R., Murray, E., Khushrushahi, N., Lampinen, T.M.: Workplace-based work disability prevention interventions for workers with common mental health conditions: a review of the literature. Journal of Occupational Rehabilitation 22, 182-195 (2012). https://doi.org/10.1007/s10926011-9338-9

  6. Airaksinen, J., et al.: Development and validation of a risk prediction model for work disability: multicohort study. Science Report 7(13578) (2017). https://doi.org/10.1038/s41598-017-13892-1

  7. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. In: Frontiers in Artificial Intelligence and Applications (2007). ISBN 978-1-58603-780-2

    Google Scholar 

  8. Zolbanin, H.M., Delen, D.: Processing electronic medical records to improve predictive analytics outcomes for hospital readmissions. Decis. Support Syst. 112, 98–110 (2018)

    Article  Google Scholar 

  9. Ng, K., et al.: PARAMO: a Parallel predictive modeling platform for healthcare analytic research using electronic health records. Journal of Biomedical Informatics 48, 160-70 (2014). https://doi.org/10.1016/j.jbi.2013.12.012

  10. Huhta-Koivisto, T.: Work disability risk prediction with machine learning. Master Thesis. Aalto University, School of Electrical Engineering. Espoo. p. 56 (2020)

    Google Scholar 

  11. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1 (2018). https://doi.org/10.18653/v1/P18-1031

  12. Shiri, R., et al.: A screening tool for the risk of disability retirement due to musculoskeletal disoders. Scandinavian Journal of Work, Enviroment & Health 44(1) (2018). https://doi.org/10.5271/sjweh.3684

  13. van Amelsvoort, L., Beurskens, K., Schröer, C., Swaen, G.: Fatigue as a predictor of work disability. Occupational and Environmental Medicine 59(10) (2002). https://doi.org/10.1136/oem.59.10.712

  14. Reho, T.: Frequent Attenders of Occupational Health Primary Care and Work Disability. Tampere University Dissertations 225 (2020). ISBN 978-952-03-1485-9

    Google Scholar 

  15. Pham, A., Névéol, A., Lavanrgne, T., et al.: Natural language processing of radiology reports for the detection of thromboembolic diseases and clinically relevant incidental findings. BMC Bioinformatics 15 (2014)

    Google Scholar 

  16. Cardinal, R.N.: Clinical records anonymisation and text extraction (CRATE): an open-source software system. BMC Med. Inform. Decis. Mak. 17(1), 50 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cunningham, H., Tablan, V., Roberts, A., Bontcheva, K.: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics. PLoS Comput. Biol. 9(2), e1002854 (2013)

    Article  Google Scholar 

  18. Alamäki, A., Aunimo, L., Ketamo, H., Parvinen, L.: Interactive machine learning: managing information richness in highly anonymized conversation data. In: Working conference on virtual enterprises, pp. 173-184. Springer, Cham (2019)

    Google Scholar 

  19. Kauttonen, J., Aunimo, L.: Dialog Modelling Experiments with Finnish One-to-One Chat Data. In: Filchenkov, A., Kauttonen, J., Pivovarova, L. (eds.) AINL 2020. CCIS, vol. 1292, pp. 34–53. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59082-6_3

    Chapter  Google Scholar 

  20. Chen, X., Wang, S., Fu, B., Long, M., Wang, J.: Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. Adv. Neural. Inf. Process. Syst. 32, 1908–1918 (2019)

    Google Scholar 

  21. Devlin, J., Ming-Wei, C., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805v2 (2019)

  22. Vaswani, A., et al.: Attention is All you Need. Advances in Neural Information Processing Systems, pp. 5998-6008 (2017)

    Google Scholar 

  23. Ding, M., Zhou, C., Yang, H., Tang, J.: CogLTX: Applying BERT to Long Texts. Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  24. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language models. In: International Conference on Learning Representations (2017)

    Google Scholar 

  25. Artstein, R.: Inter-annotator agreement. In: Handbook of linguistic annotation, pp. 297–313. Springer, Dordrecht (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vili Huhta-Koivisto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huhta-Koivisto, V., Saarela, K., Nurminen, J.K. (2023). Work Disability Risk Prediction with Text Classification of Medical Reports. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23). ACR 2023. Lecture Notes in Networks and Systems, vol 700. Springer, Cham. https://doi.org/10.1007/978-3-031-33743-7_17

Download citation

Publish with us

Policies and ethics