Abstract
Recommendation systems have become more vital in addressing the current state of information overload in e-commerce. It assists in filtering data according to customer’s personal interests. This research did comparative analysis on 30 papers that developed recommendation systems, and the techniques they utilized to generate customised and personalised data according to the customer needs. Then it proposed a new model considering the shortcoming of the analysed systems. It incorporates the nature of the data whether implicit and explicit, Recommendations techniques, and view of the data to provide recommendations that can assist e-commerce businesses to provide the products and services that better suits the customers’ customized and personalised preferences from enormous amount of collected data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kim, J., Choi, I., Li, Q.: Customer satisfaction of recommender system: examining accuracy and diversity in several types of recommendation approaches. Sustainability 13(11), 6165 (2021)
Geuens, S., Coussement, K., De Bock, K.W.: A framework for configuring collaborative filtering-based recommendations derived from purchase data. Eur. J. Oper. Res. 265(1), 208–218 (2018). https://doi.org/10.1016/j.ejor.2017.07.005
Song, H., Moon, N.: Eye-tracking and social behavior preference-based recommendation system. J. Supercomput. 75(4), 1990–2006 (2018). https://doi.org/10.1007/s11227-018-2447-x
Putra, A.S., Waruwu, H., Asbari, M., Novitasari, D., Purwanto, A.: Leadership in the Innovation Era: transactional or transformational Style? Int. J. Soc. Manag. Stud. 1(1), 89–94 (2020)
Wang, C.-D., Deng, Z.-H., Lai, J.-H., Yu, P.S.: Serendipitous recommendation in e-commerce using innovator-based collaborative filtering. IEEE Trans. Cybern. 49(7), 2678–2692 (2019). https://doi.org/10.1109/TCYB.2018.2841924
Balush, I., Vysotska, V., Albota, S.: Recommendation System Development Based on Intelligent Search, NLP and Machine Learning Methods. In: MoMLeT+ DS, pp. 584–617 (2021)
Putra, A.S., Aisyah, N.: Sistem pembelajaran online menggunakan virtual reality. In: Prosiding Seminar Nasional Pendidikan, vol. 3, pp. 295–303 (2021)
Hwangbo, H., Kim, Y.S., Cha, K.J.: Recommendation system development for fashion retail e-commerce. Electr. Commer. Res. Appl. 28, 94–101 (2018). https://doi.org/10.1016/j.elerap.2018.01.012
Liu, C.-L., Wu, X.-W.: Fast recommendation on latent collaborative relations. Knowl.-Based Syst. 109, 25–34 (2016). https://doi.org/10.1016/j.knosys.2016.06.016
Liu, C.-L., Wu, X.-W.: Large-scale recommender system with compact latent factor model. Expert Syst. Appl. 64, 467–475 (2016). https://doi.org/10.1016/j.eswa.2016.08.009
Odić, A., Tkalčič, M., Tasič, J.F., Košir, A.: Predicting and detecting the relevant contextual information in a movie-recommender system. Interact. Comput. 25(1), 74–90 (2013). https://doi.org/10.1093/iwc/iws003
Qiu, J., Liu, C., Li, Y., Lin, Z.: Leveraging sentiment analysis at the aspects level to predict ratings of reviews. Inf. Sci. 451–452, 295–309 (2018). https://doi.org/10.1016/j.ins.2018.04.009
Weichselbraun, A., Gindl, S., Scharl, A.: Extracting and grounding contextualized sentiment lexicons. IEEE Intell. Syst. 28(2), 39–46 (2013). https://doi.org/10.1109/MIS.2013.41
Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007). https://doi.org/10.1109/MIS.2007.58
Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015). https://doi.org/10.1016/j.dss.2015.03.008
Tarus, J.K., Niu, Z., Kalui, D.: A hybrid recommender system for e-learning based on context awareness and sequential pattern mining. Soft. Comput. 22(8), 2449–2461 (2017). https://doi.org/10.1007/s00500-017-2720-6
Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17(2), 271–284 (2012). https://doi.org/10.1007/s11280-012-0187-z
Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012). https://doi.org/10.1109/TKDE.2011.15
Kanavos, A., Iakovou, S.A., Sioutas, S., Tampakas, V.: Large scale product recommendation of supermarket ware based on customer behaviour analysis. Big Data Cogn. Comput. 2(2), 11 (2018)
Victor, G.S., Antonia, P., Spyros, S.: Csmr: A scalable algorithm for text clustering with cosine similarity and mapreduce. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., Makris, C. (eds.) AIAI 2014. IAICT, vol. 437, pp. 211–220. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44722-2_23
Qian, X., Feng, H., Zhao, G., Mei, T.: Personalized recommendation combining user interest and social circle. IEEE Trans. Knowl. Data Eng. 26(7), 1763–1777 (2014). https://doi.org/10.1109/TKDE.2013.168
Choi, I.Y., Oh, M.G., Kim, J.K., Ryu, Y.U.: Collaborative filtering with facial expressions for online video recommendation. Int. J. Inf. Manage. 36(3), 397–402 (2016). https://doi.org/10.1016/j.ijinfomgt.2016.01.005
Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using Gabor wavelets and learning vector quantization. Eng. Appl. Artif. Intell. 21(7), 1056–1064 (2008). https://doi.org/10.1016/j.engappai.2007.11.010
Chen, B.-L., Li, F.-F., Zhang, Y.-J., Ma, J.-L.: Information filtering in evolving online networks. Phys. Lett. A 382(5), 265–271 (2018). https://doi.org/10.1016/j.physleta.2017.11.027
Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z.: Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69, 29–39 (2017). https://doi.org/10.1016/j.eswa.2016.09.040
Chang, W.-L., Jung, C.-F.: A hybrid approach for personalized service staff recommendation. Inf. Syst. Front. 19(1), 149–163 (2015). https://doi.org/10.1007/s10796-015-9597-7
Ha, T., Lee, S.: Item-network-based collaborative filtering: a personalized recommendation method based on a user’s item network. Inf. Process. Manage. 53(5), 1171–1184 (2017). https://doi.org/10.1016/j.ipm.2017.05.003
Mezni, H., Abdeljaoued, T.: A cloud services recommendation system based on fuzzy formal concept analysis. Data Knowl. Eng. 116, 100–123 (2018). https://doi.org/10.1016/j.datak.2018.05.008
Zhang, S., Zhang, S., Yen, N.Y., Zhu, G.: The recommendation system of micro-blog topic based on user clustering. Mobile Netw. Appl. 22(2), 228–239 (2016). https://doi.org/10.1007/s11036-016-0790-9
Bagherifard, K., Rahmani, M., Nilashi, M., Rafe, V.: Performance improvement for recommender systems using ontology. Telematics Inform. 34(8), 1772–1792 (2017). https://doi.org/10.1016/j.tele.2017.08.008
Hwangbo, H., Kim, Y.: An empirical study on the effect of data sparsity and data overlap on cross domain collaborative filtering performance. Expert Syst. Appl. 89, 254–265 (2017). https://doi.org/10.1016/j.eswa.2017.07.041
Chai, Z., Li, Y.-L., Han, Y.-M., Zhu, S.-F.: Recommendation system based on singular value decomposition and multi-objective immune optimization. IEEE Access 7, 6060–6071 (2019). https://doi.org/10.1109/ACCESS.2018.2842257
Yagci, A.M., Aytekin, T., Gurgen, F.S.: Scalable and adaptive collaborative filtering by mining frequent item co-occurrences in a user feedback stream. Eng. Appl. Artif. Intell. 58, 171–184 (2017). https://doi.org/10.1016/j.engappai.2016.10.011
Yun, Y., Hooshyar, D., Jo, J., Lim, H.: Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review. J. Inf. Sci. 44(3), 331–344 (2018). https://doi.org/10.1177/0165551517692955
Yang, Y., Xu, Y., Wang, E., Han, J., Yu, Z.: Improving existing collaborative filtering recommendations via serendipity-based algorithm. IEEE Trans. Multimed. 20(7), 1888–1900 (2017). https://doi.org/10.1109/TMM.2017.2779043
Ochirbat, A., et al.: Hybrid occupation recommendation for adolescents on interest, profile, and behavior. Telematics Inform. 35(3), 534–550 (2018). https://doi.org/10.1016/j.tele.2017.02.002
Fu, M., Qu, H., Moges, D., Lu, L.: Attention based collaborative filtering. Neurocomputing 311, 88–98 (2018). https://doi.org/10.1016/j.neucom.2018.05.049
Hsieh, M.-Y., Weng, T.-H., Li, K.-C.: A keyword-aware recommender system using implicit feedback on Hadoop. J. Parallel Distrib. Comput. 116, 63–73 (2018). https://doi.org/10.1016/j.jpdc.2017.12.008
Xu, W., Sun, J., Ma, J., Du, W.: A personalized information recommendation system for R&D project opportunity finding in big data contexts. J. Netw. Comput. Appl. 59, 362–369 (2016). https://doi.org/10.1016/j.jnca.2015.01.003
Ma, W., Ren, C., Wu, Y., Wang, S., Feng, X.: Personalized recommendation via unbalance full-connectivity inference. Physica A 483, 273–279 (2017)
Scholz, M., Dorner, V., Schryen, G., Benlian, A.: A configuration-based recommender system for supporting e-commerce decisions. Eur. J. Oper. Res. 259(1), 205–215 (2017). https://doi.org/10.1016/j.ejor.2016.09.057
Wang, Y., Deng, J., Gao, J., Zhang, P.: A hybrid user similarity model for collaborative filtering. Inf. Sci. 418–419, 102–118 (2017). https://doi.org/10.1016/j.ins.2017.08.008
Polatidis, N., Georgiadis, C.K.: A dynamic multi-level collaborative filtering method for improved recommendations. Comput. Stan. Interfaces 51, 14–21 (2017). https://doi.org/10.1016/j.csi.2016.10.014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ibrahim, W., Subedi, B., Zoha, S., Ali, A., Salahuddin, E. (2023). Comparative Analysis: Recommendation Techniques in E-Commerce. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23). ACR 2023. Lecture Notes in Networks and Systems, vol 700. Springer, Cham. https://doi.org/10.1007/978-3-031-33743-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-33743-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33742-0
Online ISBN: 978-3-031-33743-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)