Skip to main content

Plant Stress Recognition Using Deep Learning and 3D Reconstruction

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Abstract

Plant stress recognition consists of Identification, Classification, Quantification, and Prediction (ICQP) in crop stress. There are several approaches to plant stress identification. However, most of these approaches are based on the use of expert employees or invasive techniques. In general, expert employees have a good performance on different plants, but this alternative requires sufficient staff in order to guarantee quality crops. On the other hand, invasive techniques need the dismemberment of the leaves. To address this problem, an alternative is to process an image seeking to interpret patterns of the images where the plant geometry may be observed, thus removing the qualified labor dependency or the crop dismemberment, but adding the challenge of having to interpret images ambiguities correctly. Motivated by the latter, we propose a new approach for plant stress recognition using deep learning and 3D reconstruction. This strategy combines the abstraction power of deep learning and the visual patterns of plant geometry. For that, our methodology has three steps. First, the plant recognition step provides the segmentation, location, and delimitation of the crop. Second, we propose a leaf detection analysis to classify and locate the boundaries between the different leaves. Finally, we use a depth sensor and the pinhole camera model to extract a 3D reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels. EPFL (2010)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. In: Computer Vision and Pattern Recognition, pp. 1–17 (2020). https://doi.org/10.48550/arXiv.2004.10934

  3. Clauw, P., et al.: Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol. 167(3), 800–816 (2015)

    Article  Google Scholar 

  4. Gee, A.P., Chekhlov, D., Calway, A., Mayol-Cuevas, W.: Discovering higher level structure in visual slam. IEEE Trans. Rob. 24(5), 980–990 (2008). https://doi.org/10.1109/TRO.2008.2004641

  5. Ghosal, S., Blystone, D., Singh, A.K., Ganapathysubramanian, B., Singh, A., Sarkar, S.: An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. 115(18), 4613–4618 (2018)

    Article  Google Scholar 

  6. Hairmansis, A., Berger, B., Tester, M., Roy, S.J.: Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7(1), 1–10 (2014). https://doi.org/10.1186/s12284-014-0016-3

    Article  Google Scholar 

  7. Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R., Liebisch, F.: A spatio temporal spectral framework for plant stress phenotyping. Plant Methods 15(1), 13 (2019)

    Article  Google Scholar 

  8. Lobos, G.A., Matus, I., Rodriguez, A., Romero-Bravo, S., Araus, J.L., del Pozo, A.: Wheat genotypic variability in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral reflectance. J. Integr. Plant Biol. 56(5), 470–479 (2014)

    Article  Google Scholar 

  9. Neilson, E.H., Edwards, A.M., Blomstedt, C., Berger, B., Møller, B.L., Gleadow, R.M.: Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. 66(7), 1817–1832 (2015)

    Article  Google Scholar 

  10. Pieruschka, R., Schurr, U., et al.: Plant phenotyping: past, present, and future. Plant Phenomics 2019, 7507131 (2019)

    Article  Google Scholar 

  11. Singh, A.K., Ganapathysubramanian, B., Sarkar, S., Singh, A.: Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci. 23(10), 883–898 (2018)

    Article  Google Scholar 

  12. Tariq, M., et al.: Rice phenotyping. In: Sarwar, N., Atique-ur-Rehman, A.S., Hasanuzzaman, M. (eds.) Modern Techniques of Rice Crop Production, pp. 151–164. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-4955-4_11

  13. Vakilian, K.A.: Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  14. Vasseur, F., Bontpart, T., Dauzat, M., Granier, C., Vile, D.: Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. J. Exp. Bot. 65(22), 6457–6469 (2014)

    Article  Google Scholar 

  15. Walter, A., Finger, R., Huber, R., Buchmann, N.: Opinion: smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. 114(24), 6148–6150 (2017)

    Article  Google Scholar 

  16. Zhao, J., et al.: Improved vision-based vehicle detection and classification by optimized yolov4. IEEE Access, 8590–8603 (2022). https://doi.org/10.1109/ACCESS.2022.3143365

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. de Jesús Osuna-Coutiño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ríos-Toledo, G., Pérez-Patricio, M., Cundapí-López, L.Á., Camas-Anzueto, J.L., Morales-Navarro, N.A., Osuna-Coutiño, J.A.d.J. (2023). Plant Stress Recognition Using Deep Learning and 3D Reconstruction. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics