Skip to main content

Patterns in Genesis of Breast Cancer Tumor

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13902))

Included in the following conference series:

  • 336 Accesses

Abstract

In this paper we use the genetic network (GN) structural analysis for identifying the plausible main genes in breast cancer. The interaction and mutual information among them could detemine the patterns of genesis in brest cancer primary tumors. The analyzed data is from biopsies in the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO). ARACNE algorithm is applied to find out the correlation matrix of gene expressions in biopsies, thereafter the GN is constructed. The each node-gene and the weighted links between them allow for genes importance in the GN. The gene ranking is obtained with both the gene-node degree and the mutual information or correlation values between each other gene. To get reliable conclusions, the single GN analysis is hundred times replicated and averaging the results. This way, to find out patterns of shared expression through genes in breast cancer primary tumor, an initial data statistical analysis is practiced.

Thanks to Consejo Nacional de Ciencia y Tecnología de México, CONACyT: Project A1-S-20037, Matías Alvarado principal investigator; and the Moises León Pinedas’ Master Scholarship CVU 1144833.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NetworkX is a Python library [18], quite popular for complex networks studies.

  2. 2.

    The used device is with RAM 16 GB, processor 11th Gen Intel®Core\(^\textrm{TM}\) i7-11800H @ 2.30GHz x 16, disk 1.0 TB, OS Ubuntu 22.04 LTS of 64 bits.

References

  1. Statistics about the world day to fight breast cancer (October 19) from INEGI (2021). https://www.inegi.org.mx/app/saladeprensa/noticia.html?id=6844. Accessed 1 Sept 2022

  2. Breast cancer from World Health Organization (2021). https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Accessed 20 Sept 2022

  3. Newton, P., et al.: Spreaders and sponges define metastasis in lung cancer: a Markov Chain Monte Carlo mathematical model. Cancer Res. 73(9) (2013)

    Google Scholar 

  4. Hanahan, D., et al.: Hallmarks of cancer: the next generation. Cell 144(5) (2011)

    Google Scholar 

  5. Newton, P., et al.: Spatiotemporal progression of metastatic breast cancer: a Markov chain model highlighting the role of early metastatic sites. NPJ Breast Cancer 1 (2015)

    Google Scholar 

  6. Rojas-Domínguez, A., et al.: Modeling cancer immunoediting in tumor microenvironment with system characterization through the ising-model Hamiltonian. BMC Bioinform. 23(1) (2022)

    Google Scholar 

  7. Sergey, N., et al.: The complete sequence of human genome. Science 376(6588) (2022)

    Google Scholar 

  8. Texada, M., Koyama, T., Rewitz, K.: Regulation of body size and growth control. Genetics 216 (2020)

    Google Scholar 

  9. Margolin, A., et al.: ARACne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 (2006)

    Google Scholar 

  10. ARACne-multicore (2021). https://github.com/josemaz/aracne-multicore. Accessed June 2022

  11. Genomic data commons data portal from NCI NIH in https://portal.gdc.cancer.gov/

  12. Gene expression omnibus from NCBI in https://www.ncbi.nlm.nih.gov/geo/

  13. Buccs, G., et al.: Gene expression profiling of human cancers. Ann. New York Acad. Sci. 1028(1), 28–37 (2004)

    Google Scholar 

  14. Barabási, A.-L.: Network Science. Network Science, London (2014)

    MATH  Google Scholar 

  15. Alcalá, S., et al.: Modularity in biological networks. Front. Genetics 12 (2021)

    Google Scholar 

  16. Barkai, N., et al.: Robustness in simple biochemical networks. Nature 387(6636), 913–917 (1997)

    Google Scholar 

  17. Kimura, S., et al.: Genetic network inference using hierarchical structure. Front. Physiol. 7 (2016)

    Google Scholar 

  18. Hagberg, D.A., et al.: NetworkX network analysis python

    Google Scholar 

  19. Alvarado, M., et al.: Genetic network of breast cancer metastasis in lymph nodes via information theory algorithms. In: 19th CCE, pp. 1–6 (2022)

    Google Scholar 

  20. Cohen, A.B.: The interaction of -1-antitrypsin with chymotrypsin, trypsin and elastase. Biochimica et Biophysica Acta (BBA) - Enzymology 391(1), 193–200 (1975)

    Google Scholar 

  21. Alkafaas, S., et al.: Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/AKT inhibition in luminal a breast cancer cells graphical abstract. Med. Oncol. 40 (2022)

    Google Scholar 

  22. Sallee, N., et al.: A pilot screen of a novel peptide hormone library identified candidate GPR83 ligands. SLAS DISCOVERY: Adv. Sci. Drug Discovery 25 (2020)

    Google Scholar 

  23. Du, J., et al.: Identification and prognostic value exploration of cyclophosphamide (Cytoxan)-centered chemotherapy response-associated genes in breast cancer. DNA Cell Biol. 40(11) (2021)

    Google Scholar 

  24. Diamandis, E.P., et al.: The new human Kallikrein gene family: implications in carcinogenesis. Trends Endocrinol. Metab. 11(2) (2000)

    Google Scholar 

  25. Li, Z., et al.: MiR-218-5p targets LHFPL3 to regulate proliferation, migration, and epithelial-mesenchymal transitions of human glioma cells. Biosci. Rep. 39(3) (2019)

    Google Scholar 

  26. Wang, W., et al.: TRIM59 regulates invasion and migration of nasopharyngeal carcinoma cells by targeted modulation of PPM1B. Nan fang yi ke da xue xue bao = J. South. Med. Univ. 41(7) (2021)

    Google Scholar 

Download references

Acknowledgement

Thanks to Consejo Nacional de Ciencia y Tecnología de México: Project A1-S-20037, Matías Alvarado principal investigator; and Moisés León Pinedas’ Master Scholarship No. CVU: 1144833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

León, M., Alvarado, M. (2023). Patterns in Genesis of Breast Cancer Tumor. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics