Skip to main content

Machine-Learning Based Estimation of the Bending Magnitude Sensed by a Fiber Optic Device

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Abstract

Bending estimation is an important property that must be assessed in several engineering applications including structural health monitoring, aerospace, robotics, geophysics, etc. While strain gauges and accelerometers are used to estimate bending behavior based on Machine-Learning (ML), few works in the literature have focused on the estimation of the magnitude of bending by combining ML techniques and fiber optic sensors. In this work, an ML-based method for estimating bending magnitude using the signal generated by an optical fiber sensor is presented. The sensor is formed by splicing a single-mode fiber with a multimode fiber. The interferogram generated from the sensor is processed to create a set of signal feature vectors (FVs). Thus, for estimating the bending magnitude, these FVs are used to train Machine-learning algorithms including Support Vector Machine, K-Nearest Neighbors, Naive Bayes, and Random Forest. To evaluate how each ML model performs, the accuracy, precision, recall, and \(F_1\)-score metrics are used. The best performance is obtained by the Random Forest algorithm with a classification accuracy of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ogundare, J.O.: Precision surveying: the principles and geomatics practice. John Wiley & Sons (2015)

    Google Scholar 

  2. Kersey, A., et al.: Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)

    Article  Google Scholar 

  3. Lee, B.H.: Interferometric fiber optic sensors. Sensors 12(3), 2467–2486 (2012). https://www.mdpi.com/1424-8220/12/3/2467

  4. Ciȩszczyk, S., Kisała, P.: Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber bragg grating sensor. Appl. Opt. 55(6), 1412–1420 (2016). https://opg.optica.org/ao/abstract.cfm?URI=ao-55-6-1412

  5. Voulodimos, A., Doulamis, N., Bebis, G., Stathaki, T.: Recent developments in deep learning for engineering applications. Computational Intell. Neurosc. (2018)

    Google Scholar 

  6. Pasupa, K., Sunhem, W.: A comparison between shallow and deep architecture classifiers on small dataset. In: 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–6 (2016)

    Google Scholar 

  7. Pham, C.C., Jeon, J.W.: Robust object proposals re-ranking for object detection in autonomous driving using convolutional neural networks. Signal Proces. Image Commun. 53, 110–122, (2017). https://www.sciencedirect.com/science/article/pii/S0923596517300231

  8. Li, S., Deng, M., Lee, J., Sinha, A., Barbastathis, G.: Imaging through glass diffusers using densely connected convolutional networks. Optica, 5(7), 803–813 (2018). https://opg.optica.org/optica/abstract.cfm?URI=optica-5-7-803

  9. Aisawa, S., Noguchi, K., Matsumoto, T.: Remote image classification through multimode optical fiber using a neural network. Opt. Lett. 16(9), 645–647 (1991). https://opg.optica.org/ol/abstract.cfm?URI=ol-16-9-645

  10. Lohani, S., Knutson, E.M., O’Donnell, M., Huver, S.D., Glasser, R.T.: On the use of deep neural networks in optical communications. Appl. Opt. 57(15), 4180–4190 (2018). https://opg.optica.org/ao/abstract.cfm?URI=ao-57-15-4180

  11. Rivenson, Y., et al.: Deep learning microscopy. Optica 4(11), 1437–1443 (2017). https://opg.optica.org/optica/abstract.cfm?URI=optica-4-11-1437

  12. Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-storm: super-resolution single-molecule microscopy by deep learning. Optica 5(4), 458–464 (2018). https://opg.optica.org/optica/abstract.cfm?URI=optica-5-4-458

  13. Corsi, A., Chang, J.H., Wang, R., Wang, L., Rusch, L.A., LaRochelle, S.: Highly elliptical core fiber with stress-induced birefringence for mode multiplexing. Opt. Lett. 45(10), 2822–2825 (2020). https://opg.optica.org/ol/abstract.cfm?URI=ol-45-10-2822

  14. Jakkula, V.: Tutorial on support vector machine (svm), School of EECS, vol. 37(2.5), p. 3. Washington State University (2006)

    Google Scholar 

  15. Sun, S., Huang, R.: An adaptive k-nearest neighbor algorithm. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 91–94 IEEE (2010)

    Google Scholar 

  16. Nir Friedman, M.G., Geiger, D.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  17. Leo, B.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  18. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Information Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  19. Wong, T.-T., Yeh, P.-Y.: Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 32(8), 1586–1594 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Valentín-Coronado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valentín-Coronado, L.M., Martínez-Manuel, R., Esquivel-Hernández, J., LaRochelle, S. (2023). Machine-Learning Based Estimation of the Bending Magnitude Sensed by a Fiber Optic Device. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics