Skip to main content

A Method for Counting Models on Cubic Boolean Formulas

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13902))

Included in the following conference series:

  • 353 Accesses

Abstract

We present an algorithm based on heuristic variable selection for computing the number of models on two conjunctive normal form Boolean formulas whose restricted graph is represented by a cubic graph. For this class of formulas, we show that in most of the cases our proposal improves the time-complexity with respect of the current leader algorithm for counting models on two conjunctive form formulas of this kind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buchanan, B.G., Lederberg, J.: The heuristic DENDRAL program for explaining empirical data. In: Freiman, C.V., Griffith, J.E., Rosenfeld, J.L. (eds.) Information Processing, Proceedings of IFIP Congress 1971, Volume 1 - Foundations and Systems, Ljubljana, Yugoslavia, August 23–28, 1971, pp. 179–188. North-Holland (1971)

    Google Scholar 

  2. COXETER, H., FRUCHT, R., POWERS, D.L.: Dedication. In: Zero-Symmetric Graphs, pp. 1–170. Academic Press (1981). https://doi.org/10.1016/B978-0-12-194580-0.50003-3

  3. Darwiche, A.: On the tractable counting of theory models and its application to truth maintenance and belief revision. J. Appl. Non-Classical Logics 11, 11–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frucht, R.: A canonical representation of trivalent hamiltonian graphs. J. Graph Theor. 1(1), 45–60 (1977). https://doi.org/10.1002/jgt.3190010111

    Article  MathSciNet  MATH  Google Scholar 

  5. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-sat solutions and colorings with applications. In: Algorithmic Aspects in Information and Management, pp. 47–57. Springer, Berlin Heidelberg, Berlin, Heidelberg (2007)

    Google Scholar 

  6. G. Brifhtwell, P.W.: Counting linear extensions. Order 8(e), 225–242 (1991)

    Google Scholar 

  7. J., L.: Dendral-64 - a system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs. Tech. rep., National Aeronautics and Space Administration. Grant NsG, pp. 81–60 (1965)

    Google Scholar 

  8. López, M.A., Marcial-Romero, J.R., Hernández, J.A., Ita, G.D.: Model counting for #2sat problem in outerplanar graphs. In: Proceedings of the Eleventh Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning. vol. 2264, pp. 76–87. CEUR Workshop Proceedings (2018)

    Google Scholar 

  9. López-Medina, M.A., Marcial-Romero, J.R., Ita, G.D., Moyao, Y.: A linear time algorithm for computing #2SAT for outerplanar 2-CNF formulas. Lect. Notes Comput. Sci. 10880, 72–81 (2018)

    Article  Google Scholar 

  10. López-Medina, M.A., Marcial-Romero, J.R., Ita, G.D., Valdovinos, R.M.: A fast and efficient method for #2sat via graph transformations. Advances in Soft Computing, pp. 95–106 (2017)

    Google Scholar 

  11. López-Medina, M.A., Marcial-Romero, J.R., Luna, G.D.I., Montes-Venegas, H.A., Alejo, R.: A linear time algorithm for solving #2SAT on cactus formulas. CoRR, ams/1702.08581 (2017)

    Google Scholar 

  12. López-Medina, M.A., Marcial-Romero, J.R., De Ita-Luna, G., Hernández, J.A.: A linear time algorithm for counting #2SAT on series-parallel formulas. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds.) MICAI 2020. LNCS (LNAI), vol. 12468, pp. 437–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60884-2_33

    Chapter  Google Scholar 

  13. Marcial-Romero, J.R., Ita, G.D., Hernández, J.A., Valdovinos, R.M.: A parametric polynomial deterministic algorithm for #2sat. Lect. Notes Comput. Sci. 9413, 202–213 (2015)

    Google Scholar 

  14. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Szeider, S.: On Fixed-Parameter Tractable Parametrizations of SAT, pp. 188–202. Springer, Berlin Heidelberg pp (2004)

    MATH  Google Scholar 

  16. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29(3), 623–641 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wahlström, M.: A tighter bound for counting max-weight solutions to 2sat instances, pp. 202–213. Springer, Berlin Heidelberg pp (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. López-Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Medina, M.A., Marcial-Romero, J.R., Hernández, J.A., Morales-Hernández, S. (2023). A Method for Counting Models on Cubic Boolean Formulas. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics