Abstract
We present an algorithm based on heuristic variable selection for computing the number of models on two conjunctive normal form Boolean formulas whose restricted graph is represented by a cubic graph. For this class of formulas, we show that in most of the cases our proposal improves the time-complexity with respect of the current leader algorithm for counting models on two conjunctive form formulas of this kind.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buchanan, B.G., Lederberg, J.: The heuristic DENDRAL program for explaining empirical data. In: Freiman, C.V., Griffith, J.E., Rosenfeld, J.L. (eds.) Information Processing, Proceedings of IFIP Congress 1971, Volume 1 - Foundations and Systems, Ljubljana, Yugoslavia, August 23–28, 1971, pp. 179–188. North-Holland (1971)
COXETER, H., FRUCHT, R., POWERS, D.L.: Dedication. In: Zero-Symmetric Graphs, pp. 1–170. Academic Press (1981). https://doi.org/10.1016/B978-0-12-194580-0.50003-3
Darwiche, A.: On the tractable counting of theory models and its application to truth maintenance and belief revision. J. Appl. Non-Classical Logics 11, 11–34 (2012)
Frucht, R.: A canonical representation of trivalent hamiltonian graphs. J. Graph Theor. 1(1), 45–60 (1977). https://doi.org/10.1002/jgt.3190010111
Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-sat solutions and colorings with applications. In: Algorithmic Aspects in Information and Management, pp. 47–57. Springer, Berlin Heidelberg, Berlin, Heidelberg (2007)
G. Brifhtwell, P.W.: Counting linear extensions. Order 8(e), 225–242 (1991)
J., L.: Dendral-64 - a system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs. Tech. rep., National Aeronautics and Space Administration. Grant NsG, pp. 81–60 (1965)
López, M.A., Marcial-Romero, J.R., Hernández, J.A., Ita, G.D.: Model counting for #2sat problem in outerplanar graphs. In: Proceedings of the Eleventh Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning. vol. 2264, pp. 76–87. CEUR Workshop Proceedings (2018)
López-Medina, M.A., Marcial-Romero, J.R., Ita, G.D., Moyao, Y.: A linear time algorithm for computing #2SAT for outerplanar 2-CNF formulas. Lect. Notes Comput. Sci. 10880, 72–81 (2018)
López-Medina, M.A., Marcial-Romero, J.R., Ita, G.D., Valdovinos, R.M.: A fast and efficient method for #2sat via graph transformations. Advances in Soft Computing, pp. 95–106 (2017)
López-Medina, M.A., Marcial-Romero, J.R., Luna, G.D.I., Montes-Venegas, H.A., Alejo, R.: A linear time algorithm for solving #2SAT on cactus formulas. CoRR, ams/1702.08581 (2017)
López-Medina, M.A., Marcial-Romero, J.R., De Ita-Luna, G., Hernández, J.A.: A linear time algorithm for counting #2SAT on series-parallel formulas. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds.) MICAI 2020. LNCS (LNAI), vol. 12468, pp. 437–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60884-2_33
Marcial-Romero, J.R., Ita, G.D., Hernández, J.A., Valdovinos, R.M.: A parametric polynomial deterministic algorithm for #2sat. Lect. Notes Comput. Sci. 9413, 202–213 (2015)
Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302 (1996)
Szeider, S.: On Fixed-Parameter Tractable Parametrizations of SAT, pp. 188–202. Springer, Berlin Heidelberg pp (2004)
Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29(3), 623–641 (1982)
Wahlström, M.: A tighter bound for counting max-weight solutions to 2sat instances, pp. 202–213. Springer, Berlin Heidelberg pp (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López-Medina, M.A., Marcial-Romero, J.R., Hernández, J.A., Morales-Hernández, S. (2023). A Method for Counting Models on Cubic Boolean Formulas. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-33783-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33782-6
Online ISBN: 978-3-031-33783-3
eBook Packages: Computer ScienceComputer Science (R0)