Skip to main content

An UNet-Based Brain Tumor Segmentation Framework via Optimal Mass Transportation Pre-processing

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13769))

Included in the following conference series:

  • 336 Accesses

Abstract

This article aims to build a framework for MRI images of brain tumor segmentation using the deep learning method. For this purpose, we develop a novel 2-Phase UNet-based OMT framework to increase the ratio of brain tumors using optimal mass transportation (OMT). Moreover, due to the scarcity of training data, we change the density function by different parameters to increase the data diversity. For the post-processing, we propose an adaptive ensemble procedure by solving the eigenvectors of the Dice similarity matrix and choosing the result with the highest aggregation probability as the predicted label. The Dice scores of the whole tumor (WT), tumor core (TC), and enhanced tumor (ET) regions for online validation computed by SegResUNet were 0.9214, 0.8823, and 0.8411, respectively. Compared with random crop pre-processing, OMT is far superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yueh, M., Lin, W.-W., Wu, C.-T., Yau, S.: A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci. Comput. 78, 1353–1386 (2019). https://doi.org/10.1007/s10915-018-0822-7

    Article  MathSciNet  Google Scholar 

  2. Yueh, M.-H., Li, T., Lin, W.-W., Yau, S.-T.: A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J. Imaging Sci. 12, 1071–1098 (2019)

    Article  MathSciNet  Google Scholar 

  3. Yueh, M.-H., Huang, T.-M., Li, T., Lin, W.-W., Yau, S.-T.: Projected gradient method combined with homotopy techniques for volume-measure-preserving optimal mass transportation problems. J. Sci. Comput. 88, 64 (2021). https://doi.org/10.1007/s10915-021-01583-z

    Article  MathSciNet  Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  5. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

    Article  Google Scholar 

  6. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. Preprint at https://arxiv.org/abs/2107.02314 (2021)

  7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  8. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  9. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331 (2018)

    Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  11. Hatamizadeh, A., et al.: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images (2022). https://arxiv.org/abs/2201.01266

  12. Chao, P., Kao, C.-Y., Ruan, Y., Huang, C.-H., Lin, Y.-L.: HarDNet: a low memory traffic network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3551–3560 (2019)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2014). https://arxiv.org/abs/1411.4038

  14. Lin, W., et al.: A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation. Sci. Rep. 12, 6452 (2022)

    Article  Google Scholar 

  15. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015). http://arxiv.org/abs/1412.6980

  17. The MONAI Consortium. Project MONAI (2020). https://doi.org/10.5281/zenodo.4323059

Download references

Acknowledgments

This work was partially supported by the Ministry of Science and Technology (MoST), the National Center for Theoretical Sciences, and Big Data Computing Center of Southeast University. W.-W. Lin and T.M. Huang were partially supported by MoST 110-2115-M-A49-004- and MoST 110-2115-M-003-012-MY3, respectively. T. Li was supported in part by the National Natural Science Foundation of China (NSFC) 11971105.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsung-Ming Huang or Tiexiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, JW., Huang, TM., Li, T., Lin, WW., Wang, H., Yau, ST. (2023). An UNet-Based Brain Tumor Segmentation Framework via Optimal Mass Transportation Pre-processing. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33842-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33841-0

  • Online ISBN: 978-3-031-33842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics