Skip to main content

Weighting Schemes for Federated Learning in Heterogeneous and Imbalanced Segmentation Datasets

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Abstract

Federated learning allows for training deep learning models from various sources (e.g., hospitals) without sharing patient information, but only the model weights. Two central problems arise when sending the updated weights to the central node in a federation: the imbalance of the datasets and data heterogeneity caused by differences in scanners or acquisition protocols. In this paper, we benchmark the federated average algorithm and adapt two weighting functions to counteract the effect of data imbalance. The approaches are validated on a segmentation task with synthetic data from imbalanced centers, and on two multi-centric datasets with the clinically relevant tasks of stroke infarct core prediction and brain tumor segmentation. The results show that accounting for the imbalance in the data sources improves the federated average aggregation in different perfusion CT and structural MRI images in the ISLES and BraTS19 datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.isles-challenge.org/.

  2. 2.

    https://monai.io/.

  3. 3.

    https://pytorch.org/.

  4. 4.

    https://torchio.readthedocs.io/index.html.

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  2. Chang, K., et al.: Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25(8), 945–954 (2018)

    Article  Google Scholar 

  3. Chen, X., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 102444 (2022)

    Google Scholar 

  4. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  5. Diao, E., Ding, J., Tarokh, V.: Heterofl: computation and communication efficient federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264 (2020)

  6. Hakim, A., et al.: Predicting infarct core from computed tomography perfusion in acute ischemia with machine learning: lessons from the isles challenge. Stroke 52(7), 2328–2337 (2021)

    Article  Google Scholar 

  7. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  8. Karimireddy, S.P., et al.: Mime: mimicking centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606 (2020)

  9. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 5132–5143. PMLR (2020). https://proceedings.mlr.press/v119/karimireddy20a.html

  10. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  11. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  12. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FEDDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  15. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  16. Myronenko, A.: 3D MRI Brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  17. Pati, S., et al.: Federated learning enables big data for rare cancer boundary detection. arXiv preprint arXiv:2204.10836 (2022)

  18. Remedios, S.W., Butman, J.A., Landman, B.A., Pham, D.L.: Federated gradient averaging for multi-site training with momentum-based optimizers. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 170–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_17

    Chapter  Google Scholar 

  19. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  20. Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18

    Chapter  Google Scholar 

  21. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  22. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was co-financed by Innosuisse (grant 43087.1 IP-LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Otálora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otálora, S. et al. (2023). Weighting Schemes for Federated Learning in Heterogeneous and Imbalanced Segmentation Datasets. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33842-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33841-0

  • Online ISBN: 978-3-031-33842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics