Skip to main content

Robustifying Automatic Assessment of Brain Tumor Progression from MRI

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Abstract

Accurate assessment of brain tumor progression from magnetic resonance imaging is a critical issue in clinical practice which allows us to precisely monitor the patient’s response to a given treatment. Manual analysis of such imagery is, however, prone to human errors and lacks reproducibility. Therefore, designing automated end-to-end quantitative tumor’s response assessment is of pivotal clinical importance nowadays. In this work, we further investigate this issue and verify the robustness of bidimensional and volumetric tumor’s measurements calculated over the delineations obtained using the state-of-the-art tumor segmentation deep learning model which was ranked 6\(^\textrm{th}\) in the BraTS21 Challenge. Our experimental study, performed over the Brain Tumor Progression dataset, showed that volumetric measurements are more robust against varying-quality tumor segmentation, and that improving brain extraction can notably impact the calculation of the tumor’s characteristics.

This work was supported by the National Centre for Research and Development (POIR.01.01.01-00-0092/20). JN was supported by the Silesian University of Technology funds through the grant for maintaining and developing research potential. This paper is in memory of Dr. Grzegorz Nalepa, an extraordinary scientist, pediatric hematologist/oncologist, and a compassionate champion for kids at Riley Hospital for Children, Indianapolis, USA, who helped countless patients and their families through some of the most challenging moments of their lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, H.K., Fatah, N.A., Mohamad, H.J., Alzuky, A.A.: Brain tumor classification using texture feature extraction. J. Phys. Conf. Ser. 1892(1), 012012 (2021)

    Article  Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification (2021). https://doi.org/10.48550/arXiv.2107.02314. http://arxiv.org/abs/2107.02314, number: arXiv:2107.02314

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117. https://www.nature.com/articles/sdata2017117

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 1–13 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Berntsen, E.M., et al.: Volumetric segmentation of glioblastoma progression compared to bidimensional products and clinical radiological reports. Acta Neurochir. 162(2), 379–387 (2020)

    Article  Google Scholar 

  6. Chang, K., et al.: Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol. 21(11), 1412–1422 (2019)

    Article  Google Scholar 

  7. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  8. Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5(1), 011018 (2018)

    Article  Google Scholar 

  9. Ellingson, B.M., Wen, P.Y., Cloughesy, T.F.: Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14(2), 307–320 (2017)

    Article  Google Scholar 

  10. Gahrmann, R., et al.: Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab-a report from the BELOB trial. Neuro Oncol. 19(6), 853–861 (2017)

    Article  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  12. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019)

    Article  Google Scholar 

  13. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  14. Kickingereder, P., et al.: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20(5), 728–740 (2019)

    Article  Google Scholar 

  15. Kotowski, K., Adamski, S., Machura, B., Zarudzki, L., Nalepa, J.: Coupling nnU-nets with expert knowledge for accurate brain tumor segmentation from MRI. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. LNCS, vol. 12963, pp. 197–209. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_18

    Chapter  Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  17. Nalepa, J., et al.: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Med. 102, 101769 (2020)

    Article  Google Scholar 

  18. Naser, M.A., Deen, M.J.: Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput. Biol. Med. 121, 103758 (2020)

    Article  Google Scholar 

  19. Pati, S., et al.: The cancer imaging phenomics toolkit (CaPTk): technical overview. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 380–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_38

    Chapter  Google Scholar 

  20. Poernama, A.I., Soesanti, I., Wahyunggoro, O.: Feature extraction and feature selection methods in classification of brain MRI images: a review. In: Proceedings of IEEE IBITeC, vol. 1, pp. 58–63 (2019)

    Google Scholar 

  21. Rucco, M., Viticchi, G., Falsetti, L.: Towards personalized diagnosis of glioblastoma in fluid-attenuated inversion recovery (FLAIR) by topological interpretable machine learning. Mathematics 8(5), 770 (2020)

    Article  Google Scholar 

  22. Saleem, H., Shahid, A.R., Raza, B.: Visual interpretability in 3D brain tumor segmentation network. Comput. Biol. Med. 133, 104410 (2021)

    Article  Google Scholar 

  23. Schmainda, K., Prah, M.: Data from Brain-Tumor-Progression (2019). https://doi.org/10.7937/K9/TCIA.2018.15QUZVNB. https://wiki.cancerimagingarchive.net/x/1wEGAg. Version Number: 1 Type: dataset

  24. Thakur, S., et al.: Brain extraction on MRI scans in presence of diffuse glioma: multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. Neuroimage 220, 117081 (2020)

    Article  Google Scholar 

  25. Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)

    Article  Google Scholar 

  26. Zegers, C., et al.: Current applications of deep-learning in neuro-oncological MRI. Physica Med. 83, 161–173 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotowski, K., Machura, B., Nalepa, J. (2023). Robustifying Automatic Assessment of Brain Tumor Progression from MRI. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33842-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33841-0

  • Online ISBN: 978-3-031-33842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics