Abstract
Hyperparameter optimization (HPO) is a well-studied research field. However, the effects and interactions of the components in an HPO pipeline are not yet well investigated. Then, we ask ourselves: Can the landscape of HPO be biased by the pipeline used to evaluate individual configurations? To address this question, we proposed to analyze the effect of the HPO pipeline on HPO problems using fitness landscape analysis. Particularly, we studied over 119 generic classification instances from either the DS-2019 (CNN) and YAHPO (XGBoost) HPO benchmark data sets, looking for patterns that could indicate evaluation pipeline malfunction, and relate them to HPO performance. Our main findings are: (i) In most instances, large groups of diverse hyperparameters (i.e., multiple configurations) yield the same ill performance, most likely associated with majority class prediction models (predictive accuracy) or models unable to attribute an appropriate class to observations (log loss); (ii) in these cases, a worsened correlation between the observed fitness and average fitness in the neighborhood is observed, potentially making harder the deployment of local-search-based HPO strategies. (iii) these effects are observed across different HPO scenarios (tuning CNN or XGBoost algorithms). Finally, we concluded that the HPO pipeline definition might negatively affect the HPO landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bischl, B., et al.: Hyperparameter optimization: foundations, algorithms, best practices and open challenges (2021). https://doi.org/10.48550/ARXIV.2107.05847, https://arxiv.org/abs/2107.05847
Clergue, M., Verel, S., Formenti, E.: An iterated local search to find many solutions of the 6-states firing squad synchronization problem. Appl. Soft Comput. 66, 449–461 (2018). https://doi.org/10.1016/j.asoc.2018.01.026, https://www.sciencedirect.com/science/article/pii/S1568494618300322
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)
Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971). http://www.jstor.org/stable/2528823
He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)
Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning - Methods, Systems, Challenges. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-05318-5
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995)
Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Arti. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013, https://www.sciencedirect.com/science/article/pii/S0952197617300234
Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., Bischl, B.: YAHPO gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization (2021)
Pimenta, C.G., de Sá, A.G.C., Ochoa, G., Pappa, G.L.: Fitness landscape analysis of automated machine learning search spaces. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 114–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_8
Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp. 161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-9_8
Ren, P., Xiao, Y., Chang, X., Huang, P.y., Li, Z., Chen, X., Wang, X.: A comprehensive survey of neural architecture search: challenges and solutions. ACM Comput. Surv. 54(4) (2021). https://doi.org/10.1145/3447582
Sharma, A., van Rijn, J.N., Hutter, F., Müller, A.: Hyperparameter importance for image classification by residual neural networks. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 112–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_10
Traoré, K.R., Camero, A., Zhu, X.X.: Landscape of neural architecture search across sensors: how much do they differ ? ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. V-3-2022, 217–224 (2022). https://doi.org/10.5194/isprs-annals-V-3-2022-217-2022, https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2022/217/2022/
Traoré, K.R., Camero, A., Zhu, X.X.: Fitness landscape footprint: a framework to compare neural architecture search problems (2021)
Acknowledgements
Authors acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. [ERC-2016-StG-714087], Acronym: So2Sat), by the Helmholtz Association through the Framework of Helmholtz AI [grant number: ZT-I-PF-5-01] - Local Unit “Munich Unit @Aeronautics, Space and Transport (MASTr)” and Helmholtz Excellent Professorship “Data Science in Earth Observation - Big Data Fusion for Urban Research” (W2-W3-100), by the German Federal Ministry of Education and Research (BMBF) in the framework of the international future AI lab “AI4EO – Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond” (Grant number: 01DD20001) and the grant DeToL. The authors also acknowledge support by DAAD for a Doctoral Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Traoré, K.R., Camero, A., Zhu, X.X. (2023). We Won’t Get Fooled Again: When Performance Metric Malfunction Affects the Landscape of Hyperparameter Optimization Problems. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-34020-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34019-2
Online ISBN: 978-3-031-34020-8
eBook Packages: Computer ScienceComputer Science (R0)