Skip to main content

An Application of Machine Learning Tools to Predict the Number of Solutions for a Minimum Cardinality Set Covering Problem

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Abstract

The minimum cardinality set covering problem (MCSCP) is an NP-hard combinatorial optimization problem in which a set must be covered by a minimum number of subsets selected from a specified collection of subsets of the given set. It is well documented in the literature that the MCSCP has numerous, varied, and important industrial applications. For some of these applications, it would be useful to know if there are alternative optimums and the qualitative number of alternative optimums. In this article, both classification trees and neural networks are employed to qualitatively (small, medium, or large) predict the number of optimal solutions to a MCSCP. Results show that both model types have an accuracy in the low to mid 80%, with the neural network slightly outperforming the classification tree. Sensitivity and positive predictive value (PPV) are used to describe more detailed information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bixby, R.E.: A brief history of linear and mixed-integer programming computation. Doc. Math. Extra Vol. ISMP 107–121 (2012)

    Google Scholar 

  2. Emerick, B., Lu, Y., Vasko, F.: Using machine learning to predict the number of alternative solutions to a minimum cardinality set covering problem. Int. J. Industr. Optim. 2(1), 1–16 (2021)

    Article  Google Scholar 

  3. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 374(2065) (2016)

    Google Scholar 

  4. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds) Complexity of Computer Computations, Plenum, NY, pp. 85–103 (1972)

    Google Scholar 

  5. Koch, T., Berthold, T., Pedersen, J., Vanaret, C.: Progress in mathematical programming solvers from 2001 to 2020. EURO J. Comput. Optim. 10, 1–17 (2022)

    Article  MathSciNet  Google Scholar 

  6. MATLAB: Statistics and Machine Learning Toolbox Users Guide. R2020a, 1 Apple Hill Dr, Natick, MA 01760-2098 (2020)

    Google Scholar 

  7. Newhart, D.D., Stott, K.L., Vasko, F.J.: Consolidating product sizes to minimize inventory levels for a multi-stage production and distribution system. J. Oper. Res. Soc. 44, 637–644 (1993)

    Article  Google Scholar 

  8. Vasko, F.J., Wolf, F.E., Stott, K.L.: Optimal selection of ingot sizes via set covering. Oper. Res. 35, 346–353 (1987)

    Article  Google Scholar 

  9. Vasko, F.J., Wolf, F.E., Stott, K.L.: A set covering approach to metallurgical grade assignment. Eur. J. Oper. Res. 38, 27–34 (1989)

    Article  MathSciNet  Google Scholar 

  10. Vasko, F.J., Wolf, F.E., Stott, K.L., Ehrsam, O.: Bethlehem Steel combines cutting stock and set covering to enhance customer service. Math. Comput. Modell. 16(1), 9–17 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooks Emerick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emerick, B., Song, M.S., Lu, Y., Vasko, F. (2023). An Application of Machine Learning Tools to Predict the Number of Solutions for a Minimum Cardinality Set Covering Problem. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics