Abstract
This paper introduces an Adaptive Large Neighborhood Search algorithm that uses an epsilon-greedy movement selection strategy to solve a pickup and delivery problem for Smile Pickup, a real-life business. The algorithm also takes into account multiple time windows, heterogeneous fleets, and multiple depots as additional constraints. The algorithm utilises two diversification processes: a simulated annealing technique to update the current solution, and an epsilon-greedy strategy to balance between exploration and exploitation for the selection of neighbourhoods. We evaluated the algorithm’s performance using our own benchmark PickOptBench and Li & Lim benchmarks, and found that it shows great promise in solving Smile Pickup’s problem. Moreover, combining both the epsilon-greedy and simulated annealing restart strategies resulted in a 1% improvement in ALNS performance on both benchmarks. We also discovered that the algorithm found more than 70% of the best-known solutions for 4 out of the 6 classes of instances in the Li & Lim benchmark.
CIFRE n\(^o\) 2021/0599 between Smile Pickup and MIS Laboratory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Benchmark available on http://www.sintef.no/pdptw.
References
Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery models part II: transportation between pickup and delivery locations. J. Betriebswirtschaft 58, 81–117 (2006)
Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. TOP 15, 1–31 (2007)
Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time windows. In: Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2001, pp. 160–167 (2001)
de Jong, C., Kant, G., Van Vlient, A.: On finding minimal route duration in the vehicle routing problem with multiple time windows. Manuscript, Department of Computer Science, Utrecht University, Holland (1996)
Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput. Oper. Res. 52, 269–281 (2014)
Ferreira, H.S., Bogue, E.T., Noronha, T.F., Belhaiza, S., Prins, C.: Variable neighborhood search for vehicle routing problem with multiple time windows. Electron. Notes Discret. Math. 66, 207–214 (2018)
Salhi, S., Imran, A., Wassan, N.A.: The multi-depot vehicle routing problem with heterogeneous vehicle fleet: formulation and a variable neighborhood search implementation. Comput. Oper. Res. 52, 315–325 (2014)
Braekers, K., Caris, A., Janssens, G.K.: Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots. Transp. Res. Part B: Methodol. 67, 166–186 (2014)
Detti, P., Papalini, F., de Lara, G.Z.M.: A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega 70, 1–14 (2017)
Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40, 455–472 (2006)
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fagot, M., Devendeville, L.B., Lucet, C. (2023). Adaptative Local Search for a Pickup and Delivery Problem Applied to Large Parcel Distribution. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-34020-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34019-2
Online ISBN: 978-3-031-34020-8
eBook Packages: Computer ScienceComputer Science (R0)