Skip to main content

Adaptative Local Search for a Pickup and Delivery Problem Applied to Large Parcel Distribution

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Abstract

This paper introduces an Adaptive Large Neighborhood Search algorithm that uses an epsilon-greedy movement selection strategy to solve a pickup and delivery problem for Smile Pickup, a real-life business. The algorithm also takes into account multiple time windows, heterogeneous fleets, and multiple depots as additional constraints. The algorithm utilises two diversification processes: a simulated annealing technique to update the current solution, and an epsilon-greedy strategy to balance between exploration and exploitation for the selection of neighbourhoods. We evaluated the algorithm’s performance using our own benchmark PickOptBench and Li & Lim benchmarks, and found that it shows great promise in solving Smile Pickup’s problem. Moreover, combining both the epsilon-greedy and simulated annealing restart strategies resulted in a 1% improvement in ALNS performance on both benchmarks. We also discovered that the algorithm found more than 70% of the best-known solutions for 4 out of the 6 classes of instances in the Li & Lim benchmark.

CIFRE n\(^o\) 2021/0599 between Smile Pickup and MIS Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.data.gouv.fr/fr/datasets/observatoire-du-courrier-et-du-colis/.

  2. 2.

    Benchmark available on http://www.sintef.no/pdptw.

References

  1. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery models part II: transportation between pickup and delivery locations. J. Betriebswirtschaft 58, 81–117 (2006)

    Article  Google Scholar 

  2. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. TOP 15, 1–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time windows. In: Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2001, pp. 160–167 (2001)

    Google Scholar 

  4. de Jong, C., Kant, G., Van Vlient, A.: On finding minimal route duration in the vehicle routing problem with multiple time windows. Manuscript, Department of Computer Science, Utrecht University, Holland (1996)

    Google Scholar 

  5. Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput. Oper. Res. 52, 269–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferreira, H.S., Bogue, E.T., Noronha, T.F., Belhaiza, S., Prins, C.: Variable neighborhood search for vehicle routing problem with multiple time windows. Electron. Notes Discret. Math. 66, 207–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Salhi, S., Imran, A., Wassan, N.A.: The multi-depot vehicle routing problem with heterogeneous vehicle fleet: formulation and a variable neighborhood search implementation. Comput. Oper. Res. 52, 315–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braekers, K., Caris, A., Janssens, G.K.: Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots. Transp. Res. Part B: Methodol. 67, 166–186 (2014)

    Article  Google Scholar 

  9. Detti, P., Papalini, F., de Lara, G.Z.M.: A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega 70, 1–14 (2017)

    Article  Google Scholar 

  10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40, 455–472 (2006)

    Article  Google Scholar 

  11. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Fagot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fagot, M., Devendeville, L.B., Lucet, C. (2023). Adaptative Local Search for a Pickup and Delivery Problem Applied to Large Parcel Distribution. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics