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Abstract. ALNS is a popular metaheuristic with renowned efficiency in
solving combinatorial optimisation problems. However, despite 16 years
of intensive research into ALNS, whether the embedded adaptive layer
can efficiently select operators to improve the incumbent remains an
open question. In this work, we formulate the choice of operators as a
Markov Decision Process, and propose a practical approach based on
Deep Reinforcement Learning and Graph Neural Networks. The results
show that our proposed method achieves better performance than the
classic ALNS adaptive layer due to the choice of operator being condi-
tioned on the current solution. We also discuss important considerations
such as the size of the operator portfolio and the impact of the choice
of operator scales. Notably, our approach can also save significant time
and labour costs for handcrafting problem-specific operator portfolios.

Keywords: Adaptive Large Neighbourhood Search · Markov Decision
Process · Deep Reinforcement Learning · Graph Neural Networks

1 Introduction

Adaptive large neighbourhood search (ALNS) is a metaheuristic introduced by
Ropke and Pisinger [18] to solve combinatorial optimisation problems (COPs)
that iteratively deconstructs and reconstructs a part of the solution in the search
for more promising solutions. This “relax-and-reoptimise" process is executed
via a pair of destroy and repair heuristics called operators. Based on the prin-
ciple of Shaw’s large neighbourhood search (LNS) [21], ALNS contains multiple
operators and an adaptive layer that iteratively selects and applies different op-
erator pairs from a predefined operator portfolio. This is typically an embedded
Roulette Wheel (RW) algorithm that selects operators in a probabilistic fashion.

ALNS is renowned for its efficiency in finding good-quality solutions within
reasonable computational time. However, despite the wide use of ALNS for solv-
ing various COPs, the ways in which each ALNS component contributes to its
general performance is not well understood. A recent ALNS state-of-the-art re-
view [12] indicated that only 2 out of 252 papers go beyond the straightforward
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2 S. Johnn et al.

implementation and concentrate on component-based analysis, including [19]
which focuses on the selection of the ALNS acceptance criterion, and [25] on the
effectiveness of the ALNS adaptive layer for operator selection.

We summarise two main deficiencies that exist in the current ALNS frame-
work. Firstly, studies have shown that the adaptive layer has limited capability to
dynamically select the best operators, despite being engineered to do so. Turkeš
et al. [25] reported a mere 0.14% average improvement brought by the adaptive
layer from the analysis of 25 ALNS implementations, indicating a need for a more
efficient operator selection mechanism that reflects the contribution of individual
operators accurately. Secondly, operator portfolio design for a particular problem
can require considerable manual evaluation [12]. The choice of portfolio size is
also delicate: too few operators might not enable the search to visit unexplored
neighbourhoods, but a plethora of operators can introduce noise to the adaptive
layer. To mitigate these deficiencies, we make the following contributions:

• We formulate the choice of a sequence of operators as a Markov Decision
Process (MDP), in which an agent receives a reward proportional to the im-
provement in the solution. We draw a correspondence between value-based Re-
inforcement Learning (RL) methods used to solve MDPs, such as Q-learning,
and the classic RW update used in ALNS. A key insight is that RL estimates
are conditioned on the current solution, while RW updates are independent of
it, which indicates the potential to learn a stronger operator selector through
the RL framework;

• We propose a practical approach based on Deep RL for learning to select
operators. Furthermore, we highlight the potential of Graph Neural Networks
(GNNs) for generalizing to larger problem instances than seen during training;

• We carry out an extensive evaluation that includes a large selection of rep-
resentative operators from the literature. Our results demonstrate that the
proposed approach performs significantly better than the RW mechanism. We
also analyse the impact of important practical considerations such as portfolio
sizes and destroy operator scales on the optimality of the solutions.

2 Literature Review

In the last decade, training Machine Learning (ML) methods to solve highly
complex COPs has become increasingly prominent [3], especially for the Vehicle
Routing Problem (VRP) and its variants [1]. Several pioneering studies applied
RL to directly construct solutions for routing-related problems. Bello et al. [2]
used policy gradient algorithms to tackle the Travelling Salesperson Problem
(TSP). Nazari et al. [14] proposed an end-to-end framework that outputs solu-
tions directly from the routing-based problem instances. Moreover, Kool et al.
[10] proposed a construction heuristic that consists of an attention-based decoder
trained with RL to regressively build solutions for the TSP and its variants.

ML can also be applied in many cases to enhance existing solution ap-
proaches, especially in the field of metaheuristics [24]. The reader is referred
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to the work of Karimi-Mamaghan et al. [8] for a comprehensive review on the
integration of ML and metaheuristics to tackle COPs.

Several recent studies focused on integrating ML with classic LNS, which can
be viewed as a simplified version of the ALNS metaheuristic without the adap-
tive layer for operator selection. As the first paper on this topic, Hottung and
Tierney [7] proposed 2 generalised random-based destroy operators and a single
repair operator with automated learning based on a deep neural network with an
attention mechanism. Their work was the first to consider the application of RL
to LNS for solving a VRP, and achieved solutions of better quality than classic
optimisation approaches. Nevertheless, their proposed learning mechanism only
focuses on repairing incomplete solutions during the repair phase. In another
work, Falkner et al. [6] integrated a pre-trained neural construction heuristic as
the repair operator in the LNS framework to solve the VRP with time windows.
The destroy procedures remain handcrafted and are classified into 2 groups with-
out any learning involved. Moreover, Oberweger et al. [15] enhanced the LNS
framework with an ML-guided destroy operator to solve a staff rostering prob-
lem. For the reconstruction phase, the authors developed a mixed-integer linear
program as a repair method. Lastly, Syed et al. [23] proposed a neural network
in an LNS setting to solve a vehicle ride-hailing problem. However, it uses su-
pervised learning, which requires a large training dataset and, furthermore, can
only perform as well as the algorithm used for its generation.

A very recent concurrent work by Reijnen et al. [17] also applies Deep RL
to improve ALNS operator selection. It considers a state space that only uses
information about the search status (such as the search step), ignoring informa-
tion about the current solution. In contrast to this, the design of our approach
focuses on isolating the problem of operator selection from the search process,
and proposing a learning mechanism that is conditioned on the decision space
characteristics of the current solution. Furthermore, a fixed operator portfolio
consisting of 4 destroy and 3 repair operators is used in their evaluation. In
contrast, we propose a more robust operator selection system compatible with
various operator portfolios of different sizes and train the system independently
prior to integration with ALNS. Our approach also proposes the use of GNNs
for scaling to large instances.

3 Methodology

3.1 Classic ALNS Algorithm

In ALNS [18], an initial solution is relaxed and re-optimised through iteratively
employing a pair comprising a destroy operator o−i ∈ D and a repair operator
o+i ∈ R to form the new incumbent. The destroy scale d, which is randomly
drawn or set as a hyper-parameter, describes the proportion of the solution
that is destructed and reconstructed. In ALNS, the search can be divided into
sequential segments, during which an initial score ψi = 0 is assigned to each
operator (indexed by i) at the beginning and is increased by δ each time a new
incumbent is formed using an operator pair that includes i. Depending on the
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incumbent quality, the score is increased by δ1 if the newly-found incumbent is
a global best solution, δ2 for a local best one, and δ3 for an accepted yet worse
local solution, where δ1 > δ2 > δ3. At the end of each segment, the cumulated
score for each operator i and the number of times Ni it was selected are used to
compute a weight wi that estimates the operator’s capability to find promising
solutions. As shown in Equation (1), for each operator employed in the current
segment K, its weight for the next segment K + 1 is updated using a weighted
average of the historical weight wi,K and its average performance in segment K.

wi,K+1 =

{
(1− αRW) · wi,K + αRW · ψi

Ni
if ψi > 0,

wi,K if ψi = 0,
(1)

For each iteration within the segment, a pair of operators is selected using the RW
selection algorithm with probabilities w−i,K

/∑
j∈D w

−
j,K and w+

i,K

/∑
j∈R w

+
j,K ,

where w−/+i,K is the weight associated with each operator i in any given segment
K. Initially, all operators are assigned the same score and therefore have the
same selection probability. Once a new solution is formed, an ALNS acceptance
mechanism, typically used in Simulated Annealing (SA), determines whether the
newly-formed solution is accepted as the new incumbent to start the next itera-
tion. The probabilistic acceptance mechanism helps to diversify the search and
reduce the chance of becoming trapped in a non-promising local neighbourhood.
The process continues until certain stopping criteria are met.

3.2 Operator Selection as a Markov Decision Process

Blueprint of our Approach. Our learning-based approach to improve the
operator selection in ALNS consists, at a high level, of the following two steps.
Firstly, we aim to isolate operator choice from the considerations of the SA pro-
cess in ALNS, which introduces additional noise for navigating the solution space
that may obscure the operators’ contributions. To achieve this, we formulate op-
erator selection for the COP as a standalone Markov Decision Process (MDP),
in which an agent is given a limited budget of operators, and must learn to select
those that lead to the best solutions. Secondly, the learned model is integrated
into the ALNS loop and used to select operators in the SA process.

MDP Fundamentals. An MDP is a tuple (S,A, P,R). In each state s ∈ S, the
agent selects an action a ∈ A(s) out of a set of valid actions, receiving a reward r
according to a reward function R(s, a). Afterwards, the agent transitions to a new
state s′ that depends on P (s′|s, a), which is the transition function that governs
the environment dynamics. Interactions happen in episodes, each of which is
a finite sequence of (s, a, r, s′) pairs, until a terminal state is reached. Actions
are selected by the agent through the policy π (a|s) that completely specifies its
behaviour. The state-action value function Q(s, a) is the expected reward the
agent receives by picking action a at a given state s, then following π.

MDP Formulation. We are given an undirected graph G = (V,E) defined by
the given COP and a feature matrix X in which each row contains information
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about the node such as coordinates, demand, and distance. We formulate the
MDP as below. A visualisation of an episode is shown in Figure 1.

• States S: each state St is a tuple (G,X, Jt, Ct, ϕ, bt), wherein the graph G and
feature matrix X remain static. Jt is the set of tours that start and end at the
depot, forming the solution at time t. The removal list Ct = V \Jt holds all the
d nodes temporarily removed from the solution. ϕ indicates the phase: whether
a destroy or repair operator is eligible to be applied. Finally, bt indicates the
operator pair budget available to the agent.

• Actions A involve the selection of an operator ot, with those available defined
as D if ϕ = 1 (i.e., we are in the destroy phase), and R otherwise.

• Transitions P apply the selected operator ot to the current solution. Applying
a destroy operator removes d nodes from Jt and places them in the removal
list Ct. Using a repair operator reinserts the nodes from Ct into Jt, leaving Ct
empty and the solution Jt complete, and decreases the operator pair budget by
1. Transitions are stochastic due to the inherent randomness of the operators.

• Rewards R are provided once the operator budget is exhausted and the im-
provement in solution quality can be assessed via an objective function F .
Concretely, R(St, At) = F (St)− F (S0) if bt = 0, and 0 otherwise.

Fig. 1. Illustration of an MDP episode with budget b = 3 and destroy scale d = 3.
The action spaces contain 3 destroy operators D = {Random, Greedy, Related} and 2
repairs R = {Greedy, 2Regret}. The agent begins at state S0 with C0 = ∅ and routes
J0 = {[1], [2, 4], [3, 5, 8, 6], [7, 9]}, selecting operators o−0 = Random and o+1 = Greedy
to reach S2. The episode continues until the budget is exhausted and the terminal state
S5 with routes J5 = {[1, 2, 3], [4, 5, 6], [7, 8, 9]} is reached. Finally, it receives a reward
proportional to the improvement in solution quality.

3.3 Learning an Operator Selection Policy

Q-learning and relationship to Roulette Wheel update. Q-learning [27]
is a model-free RL approach for solving MDPs that relies on estimating the
state-action value function Q(s, a), from which a policy π can be derived by
acting greedily with respect to it. The agent’s interactions with the environment
generate (s, a, r, s′) tuples, and its estimates are updated according to the rule

Q(s, a)← (1− αRL) ·Q(s, a) + αRL ·
(
r + γ · max

a′∈A(s′)
Q(s′, a′)

)
(2)
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where αRL is the learning rate, and γ trades immediate versus long-term re-
wards. Written in this form, comparing the Q-learning update in Equation (2)
and the classic RW update in Equation (1), we notice that both use a weighted
factor to balance two terms representing the historical and current estimates of
performance. The key difference is that the Q-learning update is conditioned
on the state and hence captures more information that may be used to select
a relevant operator, while the RW update simply averages the gains of the op-
erators irrespective of the context in which they were applied. Therefore, RW
can be interpreted as a very rough approximation of the Q-learning update and,
intuitively, using information about the state can allow us to obtain operator
selection policies that perform at least as well. This means that Q-learning re-
quires higher sample complexity. However, this was not an issue in practice, as
we found a relatively low number of training steps suffices to reach a good policy.

Function Approximation and Graph Neural Networks. In problems with
large state spaces, neural networks are commonly used to perform function ap-
proximation of the Q(s, a) function. This helps to generalize between states that,
while not being identical, share common characteristics and hence may lead to
similar future rewards. The Deep Q-Network (DQN) algorithm [13], which uses
this principle together with replay buffers and target networks, has been used
for successfully approaching a variety of decision-making tasks.

In this work, we consider two possible neural network architectures. Firstly,
we use a Multi-Layer Perceptron (MLP) formed of layers that apply a linear
transformation of the inputs followed by a non-linear activation function. De-
spite their simplicity, MLPs are known to be universal function approximators.
Secondly, we consider Graph Neural Network (GNN) architectures [20], that
are explicitly designed to operate on graph-structured data. Such architectures
compute an embedding for each node in the graph by iteratively aggregating
the features of neighbouring nodes, resulting in node embeddings that encode
both structural and feature-based information. A desirable characteristic of many
GNN architectures is that their parametrization can be independent of the size
of the input graph. Hence, they enable learning an approximation of the state-
action value function on small instances and applying it directly on large in-
stances – an appealing approach for COPs [3].

Integrating the model with ALNS. As mentioned above, the resulting
learned policy acts greedily with respect to the learned state-action value func-
tion, always choosing the action with the highest expected cumulative reward.
This might prove problematic once integrated within ALNS, given that, in prin-
ciple, greediness may cause the search to become trapped in local optima. To
instead obtain a probabilistic policy, we use a softmax function as shown in Equa-
tion (3), in which the temperature τ allows adjusting the level of greediness of the
policy. Specifically, probabilities are uniform when τ → ∞, whereas the action
with the highest expected reward has probability approaching 1 when τ → 0.

πτ (a|s) =
exp(Q(s, a)/τ)∑

a′∈A(s) exp(Q(s, a′)/τ)
(3)
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3.4 Operators for ALNS

In the literature, operators are carefully tailored to fit different problem struc-
tures and features. Despite the large variety of operator designs, the mechanisms
behind them are surprisingly similar to the first version of ALNS [18]. We con-
ducted a thorough analysis of operators in the literature and have identified
the following 3 classes: random-based destroy that randomly removes d nodes
according to specific availability criteria, greedy-based destroy that removes the
top-ranking d nodes with respect to a particular measure, and related-based de-
stroy as an extension of Shaw’s destroy [21] that removes the most similar d
nodes according to a certain proximity value. Variations can include perturba-
tions or using problem-specific features including distance, time, cost, workload,
demand level, inventory level, removal gain, historical information, etc.

Barring a few random-based operators, almost all current repair operator de-
signs are related to greedy-based mechanisms that insert each node at the position
with the smallest cost. Variations can include a pre-sorting that changes the or-
der of node insertions according to certain criteria, including global minimum
insertion or smallest regret value. Others can have a noise factor that perturbs
the insertion cost values, or use restrictions based on historical information.

4 Experiments

4.1 Experimental Setup

Problem Settings. In this work, we consider the Capacitated Vehicle Routing
Problem (CVRP) with a single depot, a group of customer nodes and a number of
homogeneous vehicles each visiting an individual group of customer nodes. The
capacity restriction applies to the total carrying load of vehicles. Each customer
node can only be visited once. We use the R, C and RC instances (random,
clustered, and mixed random-clustered nodes) of the Solomon dataset [22] each
containing a depot and 100 customers. We assign the vehicle capacity to be 200,
and adjust it proportionally if scaling down the instance to fewer customers.

For the portfolio design, we identified 12 popular destroy operators from the
ALNS literature that span the representative categories described in Section 3.4:
the random-based variations random node destroy [18] and random route destroy
[4], the greedy-based variations worst-node removal [18], neighbourhood removal
[4] and greedy route destroy [9], and the related-based variations proximity de-
stroy [4], cluster destroy [16], node neighbourhood destroy [4], zone destroy [5],
route neighbourhood destroy [5], pair destroy [11] and historical node-pair re-
moval [16]. The repair operator portfolio is comparatively smaller. We include
the group of classic greedy repair [18] and k-regret repair [16] for k = 2.

Operator Selection Approaches. The proposed DQN agent is compared to
the following approaches. As a baseline, we consider a uniform Random sampling
(RAN) of operators. We also compare against the classic RW (CRW), which can
only be used within ALNS since it requires information about the SA outcomes
and search progress. To make the RW mechanism applicable in the MDP setting,
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we make the following adaptations to obtain a method we call Learned RW
(LRW). Firstly, in Equation (1), we replace the manually-defined operator scores
ψ computed from the discretised δ with the continuous objective value F . We
also adjust the reward feedback frequency from every operator pair in RW to
every episode in the MDP. Preliminary experimental results suggested that the
performance difference between the LRW and CRW is within 2% when applied
in ALNS without any prior training.

Training and Evaluation Methodology. For each instance, we generate 3
distinct sets J train,J validate,J test of 128 randomly initialized tours each. J train

is used by DQN and LRW for model training. J validate is used for hyperpa-
rameter tuning and model selection. Finally, J test is used to perform the final
evaluation and obtain the reported results. There are two evaluation “modes”:
MDP-compatible agents can be evaluated in a standalone fashion given an op-
erator budget (CRW is excluded), while all operators (including CRW) can be
evaluated on the end ALNS task. Training and evaluation is repeated across 10
random seeds for all agents, which are used to compute confidence intervals.

DQN Architectures and Inputs. For the DQN, we consider MLP and GNN
representations. The MLP has 256 units in the first hidden layer, with the sub-
sequent layers having half the size. As a GNN, we opt for the GAT [26], which
allows for flexible aggregation of neighbour features. We use 3 layers and a dimen-
sion of node embeddings equal to 32. Both use a learning rate of αRL = 0.0005
and are trained for 15 · 103 and 25 · 103 steps respectively. The DQN exploration
rate ε is linearly decayed from 1 to 0.1 in the first 10% of steps, then remains
fixed. The replay buffer size is equal to 20% of the number of steps. To obtain
the inputs, we construct vectors x̃it that concatenate the static instance-specific
features xi with time-dependant relevant information such as whether the node i
is routed in a tour and the number of tours in Jt. For the MLP, we stack the vec-
tors in a matrix X̃t as inputs, while for the GNN the node features are provided
directly. Unless otherwise stated, we use a softmax temperature τ = 0.01.

4.2 Experimental Results

Evaluating Agents within MDP Framework. In this experiment, we com-
pare the cumulative rewards gained by the DQN with an MLP representation,
LRW and RAN agents on the test set J test after undergoing training. To make
the training and evaluation processes less computationally intensive, we use the
first 20 customer nodes and the depot from the Solomon R, C and RC instances.
We define operator portfolios of different sizes ranging from 2 to 12 by sequen-
tially adding the 12 destroy operators introduced above, together with the 2
repair operators. The destroy scale is fixed as d = 4 and the operator pair bud-
get is b = 10, yielding MDP episodes of length 20.

Table 1 shows that the DQN agent is able to outperform competing methods
as the size of D grows. When the destroy portfolio is smaller than 3, the DQN
agent performs slightly worse due to the limited action space in which the impact
of the selected actions is difficult to distinguish from chance. The DQN agent
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Table 1. MDP evaluation results: cumulative rewards gained by the DQN, RAN and
LRW agents with destroy portfolios D of different sizes. Higher is better.

C-instance R-instance RC-instance

|D| DQN RAN LRW DQN RAN LRW DQN RAN LRW

2 232.2±2.9 252.2±3.6 252.1±4.5 216.3±5 222.9±3.7 222.8±4.4 240.2±7.5 259.4±3.4 258.9±5.6
3 228.6±9.0 221.7±3.5 245.9±6.0 212.9±5.6 208.4±4.7 215.1±3.8 236.1±6.1 224.0±3.4 230.8±7.6
4 232.5±5.1 221.2±6.4 240.3±5.8 220.2±3.1 206.9±6.0 216.2±4.1 241.2±5.8 222.4±5.1 239.5±4.8
5 328.8±2.4 258.5±5.5 293.3±8.0 330.9±4.2 246.8±3.7 273.9±6.1 331.1±2.9 260.9±4.1 272.5±7.6
6 329.9±4.2 231.7±5.8 284.9±8.9 329.5±3.3 217.5±5.5 272.5±14.9 329.5±2.6 239.5±5.4 261.6±5.1
7 328.5±2.8 246.7±4.4 282.4±11.0 330.5±3.8 236.1±4.8 253.7±8.1 331.7±2.9 247.6±3.8 264.6±6.4
8 329.5±3.9 235.6±5.2 281.6±10.6 330.9±3.6 220.4±2.0 264.5±7.0 333.7±3.3 243.7±4.5 254.7±4.8
9 330.7±3.1 225.8±5.7 274.6±12.2 328.9±4.6 212.6±3.8 260.3±5.7 332.4±3.7 226.7±7.0 250.3±8.4
10 330.2±4.5 224.4±4.7 276.2±9.3 330.3±3.3 206.7±4.5 258.6±7.0 331.0±2.6 224.3±5.8 252.6±15.3
11 330.3±2.9 222.0±4.8 275.9±6.4 327.2±8.0 210.4±4.6 259.1±9.0 326.1±15.2 223.3±6.6 245.7±8.3
12 361.8±0.2 246.9±5.5 323.7±7.0 404.2±0.6 246.8±7.0 313.1±17.7 354.9±4.1 258.5±4.1 283.9±13.0

mean 305.7±3.7 235.2±5.0 275.5±8.2 305.6±4.6 221.4±4.6 255.4±8.0 308.0±5.2 239.1±4.8 255.9±7.9

also yields smaller confidence intervals and hence a steadier performance. As
expected, the RAN agent fails to show a clear increase in rewards as the portfolio
size grows. The LRW agent, although showing a certain improvement, performs
significantly worse than the DQN. Two performance jumps in the DQN and
LRW agents were observed: from size 4 to 5 and 11 to 12 for all 3 instances, the
reason for which is the inclusion of a more efficient operator in the portfolio that
suits the behaviour of a greedy-based agent.

ALNS Evaluation. Using the same experimental setup as above, we apply the
operator selection approaches within ALNS with a fixed number of iterations.
As shown in Table 2, the DQN agent yields the lowest objective values (best
results) when used to perform operator selection in ALNS for portfolios larger
than 5. Interestingly, LRW is able to perform substantially better than CRW due
to having undergone training on a different dataset of solutions prior to being
applied. Instead, the performance of CRW is indistinguishable from RAN in the
setting across all the 3 instances.

Scaling to Larger Instances with GNN. In this experiment, we train the
DQN with a GNN representation and the LRW on instances of size 20, then
evaluate them in an MDP setting on instances of size up to 100. The operator
budget is kept the same while the destroy scale is increased proportionally to the
size, i.e., d = n/5. We use the largest destroy portfolio with |D| = 12. As shown in
the top half of Figure 2, the DQN+GNN agent outperforms the other methods,
suggesting the strong generalization of the learned operator selection policies. A
larger confidence interval is observed for the C instance, due to 1 model seed
that generalizes poorly on J test despite good performance on J validate.

Impact of Destroy Scale. Furthermore, we analyse the impact of the destroy
scale on the agents’ performances in the MDP setting, with a smaller scale
implying the removal and reinsertion of a smaller proportion of nodes. We vary
the destroy scale d ∈ [2, 4, 6, 8, 10] with destroy portfolio |D| = 12 on 20 nodes.
Results are shown in the bottom half of Figure 2. The gap between the DQN and
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Table 2. Evaluating operator selection approaches in ALNS with destroy portfolios D
of different sizes. Values represent the average and best objective values found within
a fixed number of iterations, using each approach to select operators. Lower is better.

C-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN
avg 316.28 314.96 311.18 216.33 213.03 216.34 215.12 215.75 214.19 213.09 188.11 239.49
min 244.64 245.28 240.32 154.06 149.29 153.05 151.87 153.04 150.7 149.99 146.71 176.27

LRW
avg 293.84 299.56 302.66 248.31 259.06 261.17 266.59 264.65 265.62 264.78 224.49 268.25
min 209.8 211.62 207.6 172.97 180.96 178.07 187.71 183.88 182.07 185.3 160.95 187.36

RAN
avg 293.5 313.98 315.05 284.31 299.86 294.57 299.64 303.58 312 305.74 286.08 300.76
min 209.95 219.79 212.33 194.6 206.28 199.23 203.63 208.35 212.2 213.38 197.54 207.03

CRW
avg 293.94 314.56 314.28 285.53 299.51 295.77 302.67 307.64 311.32 308.53 286.75 301.86
min 210.27 222.46 213.42 197.82 208.25 198.37 206.6 210.7 213.69 213.38 194.63 208.14

R-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN
avg 330.37 334.09 331.24 217.25 215.27 215.41 215.89 216.17 215.91 221.71 159.29 242.96
min 273.81 266.66 272.16 144.97 143.56 144.11 144.19 144.58 144.49 153.64 108.07 176.39

LRW
avg 322.22 329.14 327.18 269.97 265.26 286.74 281.67 286.63 284.94 274.17 238.46 287.85
min 246.19 254.83 243.38 187.33 183.51 199.16 196.51 201.83 196.82 189.54 157.33 205.13

RAN
avg 323.25 337.03 337.68 298.76 317.84 310.1 321.11 321.76 327.19 321.3 294.45 319.13
min 253.64 257.11 250.05 211.7 235.07 218.61 234.45 231.79 234.31 234.38 206.54 233.42

CRW
avg 322.71 333.59 336.81 298.38 320.5 308.7 318.42 321.34 327.17 324.96 296.05 318.97
min 252.39 255.69 250.28 211.47 235.15 215.55 230.06 232.49 235.87 233.28 208.18 232.76

RC-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN
avg 306.06 311.02 313.78 216.84 218.75 218.16 217.66 217.48 218.12 224.56 201.81 242.2
min 228.16 235.04 240.93 151.89 154.74 153.71 152.85 152.06 153.79 161.32 159.09 176.69

LRW
avg 294.94 314.93 310.02 278.18 282.01 286.05 292.6 293.97 293.44 292.15 261.08 290.85
min 205.05 216.86 209.63 187.78 189.92 190.45 197.61 196.75 197.62 196.21 172.7 196.42

RAN
avg 297.2 319.87 317.7 288.95 298.41 294.26 300.61 308.9 315.42 305.53 283.71 302.78
min 207.17 222.85 209.95 193.42 198.33 195.88 200.04 207.6 210.9 204.25 185.29 203.24

CRW
avg 294.94 319.07 320.76 289.51 299.99 296.09 299.98 310.67 315.4 309.69 285.73 303.8
min 205.05 221.27 213.01 195.39 200.23 196.03 202.8 207.05 211.47 205.59 186.24 204.01
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Fig. 2. Top: cumulative rewards for the DQN, LRW and RAN agents with GNN rep-
resentation. Bottom: performance as a function of destroy scales. Higher is better.
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other methods is largest for the smallest scale, suggesting that a careful selection
of operators to remove the most expensive nodes contributes more significantly
to better solution quality. In contrast, a larger destroy scale requires building
up the solution from the ground, stressing the operators’ reconstruction ability
rather than the operator selection policy. When increasing the destroy scale, the
cumulative rewards gained by different agents all converge to a similar level.

0 100 101 102

DQN temperature τ

100

150

200

250

300

min(F )

avg(F )

Fig. 3. Values of F when
varying DQN temperature in
ALNS. Lower is better.

Impact of DQN Temperature. As discussed in
Section 3.3, the temperature parameter τ controls
the greediness of the resulting policy. Figure 3 shows
the minimum and mean F obtained with ALNS as a
function of τ ∈ {10−2, 10−1, 100, 101, 102}, averaged
over the 3 instance sets. Even though a probabilis-
tic policy may be desirable in some ALNS scenar-
ios, we find that performance generally degrades as
the temperature increases. This suggests that, in
the settings tested, the inherent stochasticity of the
operators is sufficient to explore the search space
without the need to combine different choices.

5 Conclusions and Future Research

In this work, we have proposed an operator selection mechanism based on Deep
Reinforcement Learning to enhance the performance of the ALNS metaheuristic.
A key insight and contribution is the proposal of an operator selector that is
conditioned on the decision space characteristics of the current solution. We have
demonstrated its ability to outperform the classic Roulette Wheel and random
operator selection, as well as the potential of using Graph Neural Networks to
scale the model to large problem instances. Our results also highlight the impact
of the operator portfolio size and the destroy scale on performance. Plans for
future work involve applications to other combinatorial optimization problems.
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