Skip to main content

Multi-objective Optimization of Adhesive Bonding Process in Constrained and Noisy Settings

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Abstract

Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost), constrained (the process should not result in any visual damage to the materials, and stress tests should not result in adhesive failures), and uncertain (measuring the same process parameters several times lead to different break strength). Real-life physical experiments in the lab are expensive to perform (\(\sim \)6 h of experimentation and subsequent production costs); traditional evolutionary approaches are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression and Logistic Regression) to emulate the objective and constraint functions based on a limited amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of experiments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.flandersmake.be.

  2. 2.

    Other noise factors not controlled in the simulator are not further discussed.

References

  1. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012). https://doi.org/10.1016/j.tcs.2011.03.012

    Article  MathSciNet  MATH  Google Scholar 

  3. Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D.: Parallel surrogate-assisted optimization: batched Bayesian neural network-assisted GA versus q-EGO. Swarm Evol. Comput. 57, 100717 (2020)

    Article  Google Scholar 

  4. Briffoteaux, G., Ragonnet, R., Tomenko, P., Mezmaz, M., Melab, N., Tuyttens, D.: Comparing parallel surrogate-based and surrogate-free multi-objective optimization of COVID-19 vaccines allocation. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, E.G. (eds.) OLA 2022. CCIS, pp. 201–212. Springer, Cham (2022)

    Chapter  Google Scholar 

  5. Brockmann, W., Geiß, P.L., Klingen, J., Schröder, K.B.: Adhesive Bonding: Materials Applications and Technology. Wiley, Hoboken (2008)

    Book  Google Scholar 

  6. Brownlee, A.E., Wright, J.A.: Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Appl. Soft Comput. 33, 114–126 (2015). https://doi.org/10.1016/j.asoc.2015.04.010

    Article  Google Scholar 

  7. Budhe, S., Banea, M., De Barros, S., Da Silva, L.: An updated review of adhesively bonded joints in composite materials. Int. J. Adhes. Adhes. 72, 30–42 (2017)

    Article  Google Scholar 

  8. Cavezza, F., Boehm, M., Terryn, H., Hauffman, T.: A review on adhesively bonded aluminium joints in the automotive industry. Metals 10(6), 730 (2020)

    Article  Google Scholar 

  9. Correia, S., Anes, V., Reis, L.: Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures. Eng. Fail. Anal. 84, 34–45 (2018)

    Article  Google Scholar 

  10. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling (A Practical Guide), 1st edn. John Wiley and Sons, West Sussex, UK (2008)

    Google Scholar 

  11. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 110–125 (2015)

    Google Scholar 

  12. Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res. 261(1), 279–301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  14. Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4), 366–376 (2009)

    Article  MathSciNet  Google Scholar 

  15. Qin, S., Sun, C., Jin, Y., Zhang, G.: Bayesian approaches to surrogate-assisted evolutionary multi-objective optimization: A comparative study. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2074–2080 (2019)

    Google Scholar 

  16. Quan, N., Yin, J., Ng, S.H., Lee, L.H.: Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints. IIE Trans. 45(7), 763–780 (2013)

    Article  Google Scholar 

  17. Rojas Gonzalez, S., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic simulation optimization algorithm. Eur. J. Oper. Res. 284(1), 212–226 (2020). https://doi.org/10.1016/j.ejor.2019.12.014

    Article  MathSciNet  MATH  Google Scholar 

  18. da Silva, L., Ochsner, A., Adams, R., Spelt, J.: Handbook of Adhesion Technology. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-01169-6

    Book  Google Scholar 

  19. Steel, R.G.D., Torrie, J.H., et al.: Principles and Procedures of Statistics, a Biometrical Approach. No. Ed. 2, McGraw-Hill Kogakusha, Ltd. (1980)

    Google Scholar 

  20. Tao, T., Zhao, G., Ren, S.: An efficient kriging-based constrained optimization algorithm by global and local sampling in feasible region. J. Mech. Des. 142(5), 051401 (2020)

    Article  Google Scholar 

  21. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  22. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  23. Yarat, S., Senan, S., Orman, Z.: A comparative study on PSO with other metaheuristic methods. In: Mercangöz, B.A. (ed.) Applying Particle Swarm Optimization. ISORMS, vol. 306, pp. 49–72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70281-6_4

    Chapter  Google Scholar 

  24. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the FLAIR Program and by the Research Foundation Flanders (FWO Grant 1216021N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Morales-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales-Hernández, A., Van Nieuwenhuyse, I., Rojas Gonzalez, S., Jordens, J., Witters, M., Van Doninck, B. (2023). Multi-objective Optimization of Adhesive Bonding Process in Constrained and Noisy Settings. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics