Skip to main content

Mixing Data Augmentation Methods for Semantic Segmentation

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1824))

Included in the following conference series:

  • 363 Accesses

Abstract

Deep learning models are the state-of-the-art approach to deal with semantic segmentation tasks. However, training deep models require a considerable amount of images that might be difficult to obtain. This issue can be faced by means of data augmentation techniques that generate new images by applying geometric or colour transformations, or more recently by mixing several images using techniques such as CutMix or CarveMix. Unfortunately, mixing strategies are usually implemented as ad-hoc methods and are difficult to incorporate into the pipeline to train segmentation models. In this work, we present a library that implements several mixing strategies for data augmentation in semantic segmentation tasks. In particular, we provide a set of callbacks that can be integrated into the training pipeline of FastAI segmentation models. We have tested the library with a vineyard dataset and show the benefits of combining mixing strategies with traditional data augmentation techniques; namely an improvement of almost 5% was achieved using these methods regarding models trained only with traditional data augmentation methods.

This work was partially supported by Ministerio de Ciencia e Innovación [PID2020-115225RB-I00/AEI/10.13039/501100011033].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  2. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  3. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)

    Article  Google Scholar 

  4. Hao, S., Zhou, Y., Guo, Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing 406, 302–321 (2020)

    Article  Google Scholar 

  5. Howard, J., Gugger, S.: Deep Learning for Coders with fastai and PyTorch. O’Reilly Media, Sebastopol (2020)

    Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  8. Marani, R., Milella, A., Petitti, A., Reina, G.: Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Precision Agric. 22(2), 387–413 (2021)

    Article  Google Scholar 

  9. Opitz, J., Burst, S.: Macro f1 and macro f1. arXiv preprint arXiv:1911.03347 (2019)

  10. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  11. Qin, J., Fang, J., Zhang, Q., Liu, W., Wang, X., Wang, X.: Resizemix: mixing data with preserved object information and true labels. arXiv preprint arXiv:2012.11101 (2020)

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Salimans, T., et al.: Improved techniques for training GANs. In: 30th International Conference on Neural Information Processing Systems, pp. 2234–2242. Curran Associates Inc. (2016)

    Google Scholar 

  14. Simard, P., Victorri, B., LeCun, Y., Denker, J.S.: Tangent prop-a formalism for specifying selected invariances in an adaptive network. In: In Proceedings of Neural Information Processing Systems (NeuriPS 1991), vol. 91, pp. 895–903 (1991)

    Google Scholar 

  15. Singh, K.K., Yu, H., Sarmasi, A., Pradeep, G., Lee, Y.J.: Hide-and-seek: a data augmentation technique for weakly-supervised localization and beyond. arXiv preprint arXiv:1811.02545 (2018)

  16. Takahashi, R., Matsubara, T., Uehara, K.: RICAP: random image cropping and patching data augmentation for deep CNNs. In: Asian Conference on Machine Learning, pp. 786–798. PMLR (2018)

    Google Scholar 

  17. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  18. Zeng, Q., Ma, X., Cheng, B., Zhou, E., Pang, W.: GANs-based data augmentation for citrus disease severity detection using deep learning. IEEE Access 8, 172882–172891 (2020)

    Article  Google Scholar 

  19. Zhang, X., et al.: CarveMix: a simple data augmentation method for brain lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 196–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_19

    Chapter  Google Scholar 

  20. Zhu, Q., Wang, Y., Yin, L., Yang, J., Liao, F., Li, S.: Selfmix: a self-adaptive data augmentation method for lesion segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 683–692. Springer, Cham (2022)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Escobedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobedo, R., Heras, J. (2023). Mixing Data Augmentation Methods for Semantic Segmentation. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics