Skip to main content

An Investigation to Test Spectral Segments as Bacterial Biomarkers

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14003))

  • 283 Accesses

Abstract

A dictionary-based bacterial genome analysis is performed, through specific k-long factors (called res) and their maximal right elongation along the genome (called spectral segment), in order to find discriminating biomarkers at the genus and species level. The aim is pursued through a k-mer-based approach previously introduced, here applied on genomes of different bacterial taxa. Intervals for values of k are identified to obtain meaningful genomic fragments, whose collection is a suitable representation to compare genomes according to informational indexes and Jaccard’s similarity matrices. Corresponding dictionaries of k-mers are identified to discriminate bacterial genomes at genus and species level. This approach appears competitive in terms of performance (e.g., species discrimination) and size with respect to traditional barcoding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berstel, J., Karhumäki, J.: Combinatorics on words-a tutorial. current trends in theoretical computer science. Challenge New Century 2, 415–475 (2004)

    Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  3. Bonnici, V., Manca, V.: Infogenomics tools: A computational suite for informational analysis of genomes. J. Bioinforma Proteomics Rev. 1, 8–14 (2015)

    Google Scholar 

  4. Bonnici, V., Franco, G., Manca, V.: Spectral concepts in genome informational analysis. Theoret. Comput. Sci. 894, 23–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cairo, M., Rizzi, R., Tomescu, A.I., Zirondelli, E.C.: Genome assembly, from practice to theory: safe, complete and linear-time. arXiv preprint arXiv:2002.10498 (2020)

  6. Castellini, A., Franco, G., Manca, V.: A dictionary based informational genome analysis. BMC Genomics 13(1), 1–14 (2012)

    Article  Google Scholar 

  7. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de bruijn graphs to genome assembly. Nat. Biotechnol. 29(11), 987–991 (2011)

    Article  Google Scholar 

  8. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: Why are de bruijn graphs useful for genome assembly? Nat. Biotechnol. 29(11), 987 (2011)

    Article  Google Scholar 

  9. De Luca, A.: On the combinatorics of finite words. Theoret. Comput. Sci. 218(1), 13–39 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeSalle, R., Goldstein, P.: Review and interpretation of trends in DNA barcoding. Front. Ecol. Evol. 7, 302 (2019)

    Article  Google Scholar 

  11. Franco, G.: Perspectives in computational genome analysis. In: Jonoska, N., Saito, M. (eds.) Discrete and Topological Models in Molecular Biology. NCS, pp. 3–22. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40193-0_1

    Chapter  Google Scholar 

  12. Goldstein, P.Z., DeSalle, R.: Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33(2), 135–147 (2011)

    Article  Google Scholar 

  13. Hao, B., Qi, J.: Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance. J. Bioinform. Comput. Biol. 2(01), 1–19 (2004)

    Article  Google Scholar 

  14. Haubold, B., Klötzl, F., Pfaffelhuber, P.: andi: fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics 31(8), 1169–1175 (2015)

    Article  Google Scholar 

  15. Holley, G., Melsted, P.: Bifrost: highly parallel construction and indexing of colored and compacted de bruijn graphs. Genome Biol. 21(1), 1–20 (2020)

    Article  Google Scholar 

  16. Lothaire, M.: Combinatorics on Words, vol. 17. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  17. Manca, V.: The principles of informational genomics. Theoret. Comput. Sci. 701, 190–202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Acosta, N.O., Mäkinen, V., Tomescu, A.I.: A safe and complete algorithm for metagenomic assembly. Algorithms Mol. Biol. 13(1), 1–12 (2018)

    Google Scholar 

  19. Orozco-Arias, S., et al.: K-mer-based machine learning method to classify ltr-retrotransposons in plant genomes. PeerJ, 9, e11456 (2021)

    Google Scholar 

  20. Orozco-Arias, S., S Piña, J., Tabares-Soto, R., Castillo-Ossa, L.F., Guyot, R., Isaza, G.: Measuring performance metrics of machine learning algorithms for detecting and classifying transposable elements. Processes 8(6), 638 (2020)

    Google Scholar 

  21. Qi, J., Luo, H., Hao, B.: Cvtree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res. 32(suppl-2), W45–W47 (2004)

    Article  Google Scholar 

  22. Ratnasingham, S., Hebert, P.D.N.: Bold: the barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7(3), 355–364 (2007)

  23. Sarmashghi, S., Bohmann, K., Gilbert, M.T.P., Bafna, V., Mirarab, S.: SKMER: assembly-free and alignment-free sample identification using genome skims. Genome Biol. 20(1), 1–20 (2019)

    Article  Google Scholar 

  24. Thomas, T., Gilbert, J., Meyer, F.: Metagenomics-a guide from sampling to data analysis. Microb. Inf. Exp. 2(1), 1–12 (2012)

    Google Scholar 

  25. Tomescu, A.I., Medvedev, P.: Safe and complete contig assembly through OMNITIGS. J. Comput. Biol. 24(6), 590–602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vinga, S., Almeida, J.: Alignment-free sequence comparison-a review. Bioinformatics 19(4), 513–523 (2003)

    Article  Google Scholar 

  27. Wittler, R.: Alignment and reference-free phylogenomics with colored de bruijn graphs. Algorithms Mol. Biol. 15(1), 1–12 (2020)

    Article  MATH  Google Scholar 

  28. Yen, S., Johnson, J.S.: Metagenomics: a path to understanding the gut microbiome. Mamm. Genome 32(4), 282–296 (2021). https://doi.org/10.1007/s00335-021-09889-x

    Article  Google Scholar 

  29. Yi, H., Jin, L.: Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res. 41(7), e75–e75 (2013)

    Article  Google Scholar 

  30. Zielezinski, A., et al.: Benchmarking of alignment-free sequence comparison methods. Genome Biol. 20(1), 1–18 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuditta Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Astorino, S., Bonnici, V., Franco, G. (2023). An Investigation to Test Spectral Segments as Bacterial Biomarkers. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34034-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34033-8

  • Online ISBN: 978-3-031-34034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics