Sonya C. Cirlos
University of Texas Rio Grande Valley
Timothy Gomez
Massachusetts Institute of Technology
Elise Grizzell
University of Texas Rio Grande Valley
\section*{Andrew Rodriguez}
Texas State University
\section*{Robert Schweller}
University of Texas Rio Grande Valley
Tim Wylie ($\boldsymbol{\sim}$ timothy.wylie@utrgv.edu)
University of Texas Rio Grande Valley

Simulation of Multiple Stages in Single Bin Active Tile Self-Assembly

Research Article

Keywords: Staged Self-assembly, Tile Automata, Context-Free Grammar, Freezing TA
Posted Date: December 21st, 2023
DOI: https://doi.org/10.21203/rs.3.rs-3762430/v1
License: (c) (i) This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Additional Declarations: No competing interests reported.

Simulation of Multiple Stages in Single Bin Active

Sonya C. Cirlos ${ }^{1}$, Timothy Gomez ${ }^{2}$, Elise Grizzell ${ }^{1}$,
011

Andrew Rodriguez ${ }^{3}$, Robert Schweller ${ }^{1}$, Tim Wylie ${ }^{1 * \dagger}$ 012
${ }^{1 *}$ Department of Computer Science, University of Texas Rio Grande 014013
Valley, 1201 W. University Dr., Edinburg, TX, 78539, USA. 015
${ }^{2}$ Computer Science and Artificial Intelligence Laboratory, Massachusetts 016
Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA. 017
${ }^{3}$ Department of Computer Science, Texas State University, San Marcos, 018 018
TX, 78666, USA. 019
*Corresponding author(s). E-mail(s): timothy.wylie@utrgv.edu; 023
Contributing authors: sonya.cirlos01@utrgv.edu; tagomez7@mit.edu; 024
elise.grizzell01@utrgv.edu; andrew.rodriguez@txstate.edu; 025
robert.schweller@utrgv.edu; 026
${ }^{\dagger}$ These authors contributed equally to this work. 027
028
029
Abstract 030
Two significant and often competing goals within the field of self-assembly are 031Two significant and often competing goals within the field of self-assembly are 032
minimizing tile types and minimizing human-mediated experimental operations.
033 The introduction of the Staged Assembly and Single Staged Assembly models,
034 while successful in the former aim, necessitate an increase in mixing operations 035
ater. In this paper, we investigate building optimal lines as a standard benchmark
036
. 037
the added benefits of the complete automation of stages and completion in a 038
single bin while maintaining bin parallelism and a competitive number of states 039
for lines, patterned lines, and context-free grammars. 040
Keywords: Staged Self-assembly, Tile Automata, Context-Free Grammar, Freezing TA 041

1 Introduction

Many molecular programmers dream of designing single-pot reactions in which system molecules do the entirety of the computational work without any necessary intervention by the experimenter. This is arguably true self-assembly. Yet the power of experimenter intervention, in the form of mixing and splitting pots over a sequence of stages, yields power and efficiency in both theory and practice [18] that is currently unmatched even with some of the most powerful models of active self-assembly. This paper aims to address this gap in the case of 1-dimensional (1D) assembly by showing how an abstract modeling of operations of experimental stages, termed the Staged Assembly Model (SAM) [12], can be efficiently simulated by an abstract model of single-pot active self-assembly, termed Tile Automata (TA) [9].

Tile Automata generalizes passive tile assembly models (such as the two-handed tile assembly model [7]) by giving tiles dynamic states that update based on local pairwise rules, thus making it a model of active self-assembly. The Staged Assembly Model (SAM) generalizes tile assembly models by the modeling of experimenter-mediated operations, including the ability to store different portions of the system particles in separate containers or bins, and the ability to combine separate bins or split the contents of a bin among multiple bins, over a sequence of distinct stages. Previous results show that both models have substantially increased power over the basic tile selfassembly models they generalize. In particular, by offloading some of the computation onto an experimenter responsible for performing the required mixing operations of the system between stages, SAM can build complex shapes and patterns in near-optimal complexity with respect to tile types, bin counts, and stage counts [10-13, 20].

In answer to the long-standing open question of whether the substantial power of the SAM could be efficiently encoded into the reaction rules of an active single-pot system, this paper shows that in the case of 1-dimensional systems, any staged system can be encoded into a single-pot TA system with a comparable state and rule space to the tiles, bins, and stages of the SAM system it simulates. This result provides a corresponding corollary in TA for any results in 1D staged self-assembly. Further, this provides a new approach for programming 1D TA systems since designing staged systems is relatively simple with strong timing guarantees based on separate bins and stages, whereas programming complex TA systems from scratch can be daunting as the single-pot nature of the system requires careful attention to race conditions. As evidence of the power of this new result, we show how several previous results in TA now become simple corollaries of this new result. Further, we show how a general linear pattern can be constructed in TA using a number of states linear in the size of the smallest context-free grammar that produces the target pattern.

1.1 Staged Self-Assembly and Tile Automata

Algorithmic self-assembly emerged from a formalization of Wang Tiles to explore selfassembling structures. Defined by Winfree in [19], this was partially motivated by new DNA techniques that allow for the creation of DNA-based 'tiles' that can assemble into lattice structures at the nanoscale [22]. Further experimental work has investigated
active DNA-based components capable of complex tasks such as sorting molecules attached to a DNA origami surface [17].

The Staged Tile Assembly Model [12] generalizes the 2-Handed Assembly Model to allow growth to occur in multiple bins, mixing in a sequence described as stages, creating the capability to model experimental techniques, such as in [18] where 2D patterns are built with DNA origami tiles in multiple stages.

Tile Automata was introduced in [9] as a combination of hierarchical passive selfassembly systems and the active self-assembly of Cellular Automata systems where all tiles have a transitionable state. Affinity rules define which tiles can bond with each other based on their states and with how much strength. Starting from singleton tiles with states, any two producibles in the system may combine if there is enough affinity between adjacent tiles. Transition rules define state changes that may occur between two tiles once they are neighbors in an assembly.

Efficient line construction in Tile Automata was briefly studied in [5].
1.2 Related Work

Shape building was the first problem explored when the staged model was introduced [12]. In the staged model, a constant-sized set of glue types is sufficient to build any shape by encoding the description in the mix graph. The trade-off between the number of glues, bins, and stages was further investigated in later work with $1 \times n, \mathcal{O}(1) \times n$ [11], and general assemblies [10]. The complexity of verifying whether an assembly is uniquely produced is PSPACE-complete $[6,15]$.

A restricted class of systems in SAM, called Single Staged Assembly Systems (SSAS) in [13], requires each bin to only contain one terminal assembly built from two input assemblies. This restriction eliminates having multiple assemblies built in the same bin (bin parallelism). The size of the smallest SSAS that builds a 1D pattern \mathcal{P} is equivalent (up to constant factors) to the size of the smallest Context-Free Gram$\operatorname{mar}(\mathrm{CFG})$ that defines only \mathcal{P}. However, when bin parallelism is allowed, staged is more efficient than CFGs for a specific family of strings.

In [20], they built on previous results and define Polyomino Context-Free Grammars (PCFG), which generalize CFGs to 2D. The size of the smallest staged system that uniquely produces a patterned assembly is within a log factor of the smallest PCFG. In some cases, staged is much better.

One strength of Tile Automata is the possibility of being a "unifying" model, where multiple models can be connected through simulation results. The work that introduced the model [9] showed that the freezing model, where a tile may never repeat a state, simulates the non-freezing version of the model. Tile Automata was shown to simulate a model of programmable matter called Amoebots [2]. The chain of simulation was further extended in [8] where the Signal-Passing Tile Assembly Model (STAM) was shown to simulate Tile Automata. Work done in [3] shows how the 1D STAM can simulate a s stage 1D SSAS system using a single tile with $\mathcal{O}\left(s^{4}\right)$ glues types.

095
096
097
098

Fig. 1: Informal map of relations between models. Dotted line arrows indicate model is a special case of the previous. Solid lines indicate simulation results.

Tile Automata	Scale	States	Theorem
Freezing Strengthening	1	$\mathcal{O}(s b t)$	Thm.
Freezing Strengthening	2	$\mathcal{O}(s b g)$	Thm.
Strengthening	2	$\mathcal{O}(s g+b g)$	Open

Table 1: Restricted 1D Tile Automata can simulate 1D Staged model. We allow for 1D scaling. s is number of states, b is number of bins, g is the number of glues.

Aff Str	Cycle	Frz.	Det.	Single			Double		
Yes	Yes	No	ND	$\mathcal{O}\left(\|P\|^{\frac{1}{3}}\right)$	2×3	$[1]$	$\mathcal{O}\left(\|P\|^{\frac{1}{4}}\right)$	2×4	$[1]$
Yes	No	Yes	Det	$\mathcal{O}\left(\|P\|^{\frac{1}{2}}\right)$	1×2	$[1]$	$\mathcal{O}\left(\left\lvert\, P P^{\frac{1}{2}}\right.\right)$	1×1	$[1]$
No	Yes	Yes	Det	$\mathcal{O}\left(K_{P}\right)$	$\mathcal{O}(1) \times \mathcal{O}(1)$	$[5,8]$	$\mathcal{O}\left(K_{P}\right)$	1×1	$[5]$
No	No	No	Det	$\mathcal{O}\left(K_{P}^{\frac{1}{2}}\right)$	1×1	Thm. 4	$\mathcal{O}\left(K_{P}^{\frac{1}{2}}\right)$	1×1	Thm. 4
Yes	No	No	Det	$\mathcal{O}\left(L_{p}^{\frac{1}{2}}\right)$	$\mathcal{O}(1) \times 2$		$\mathcal{O}\left(L_{p}^{\frac{1}{2}}\right)$	$\mathcal{O}(1) \times 1$	
Yes	No	Yes	ND	$\mathcal{O}\left(C F_{P}\right)$	1×1	Thm 2	$\mathcal{O}\left(C F_{P}\right)$	1×1	Thm. 2

Table 2: Minimum number of states needed to construct a patterned rectangle over a constant number of colors representing the 1D pattern P in Affinity Strengthening Tile Automata with tiles not changing colors. K_{P} is the Kolmogorov complexity of the pattern $P, C F_{P}$ is the size of the smallest Context Free Grammar that produces the singleton language $\{P\}$.

1.3 Our Contributions

We show that the 1D version of Freezing Affinity Strengthening Tile Automata can simulate the 1D staged assembly model, even with flexible glues (Section 3). The Tile Automata system uses $\mathcal{O}(s b t)$ states for a system with s stages, b bins, and t tile types.

Using this result we inherit the ability to simulate Context-Free Grammars from the staged model in [13] showing the same upper bound. For the line-building results, we inherit them from [12]. Additionally using results from [8], these results carry over to the STAM as well.

This is the full version of a paper presented at UCNC 2023. We include additional upper and lower bounds on pattern building in different versions of Tile Automata.

(a) A Tile Automata System

(b) Staged Self-Assembly Example

2 Model and Definitions

We provide simplified definitions for 1D Tile Automata, then define 1D Staged Assembly as a generalization. Refer to previous work [1] and [12] for full definitions of the models.
2.1 The 1D Tile Automata model (TA)

In this dimensionally restricted version of the model, a Tile Automata system ${ }^{1}$ is a triple (Σ, Π, Δ) where Σ is an alphabet of state types, Π is an affinity function, and Δ is a set of transition rules for states in Σ. An example 1D Tile Automata system is shown in Figure 2.

Tile. Let Σ be a set of states or symbols. A tile $t=(\sigma, p)$ is a non-rotatable unit square placed at point $p \in \mathbb{Z}^{1}$ and has a state of $\sigma \in \Sigma$.
Assembly. An assembly A is a sequence of tiles $\left\{t_{1}, t_{2}, t_{3}, \ldots, t_{|A|}\right\}$. Let $A(i)$ and $A_{\Sigma}(i)$ represent the $i^{t h}$ tile and its state in assembly A, respectively. For a tile t in assembly A let $\rho_{A}(t)$ be the position of t in A.
Affinity Function. An affinity function Π takes an ordered pair in Σ^{2} as input and outputs either 0 or 1 . The affinity strength between two states for the ordered orientation is the binary output of the corresponding function. An assembly A is stable if, for every pair of tiles, $\Pi\left(A_{\Sigma}(i), A_{\Sigma}(i+1)\right)=1$. Informally, if all adjacent tiles in assembly A have an affinity, A is stable. Two assembles, A and B are combinable if the concatenation of the two assemblies $A B=C$ is also a stable assembly.
Transition Rules. Transition rules allow states to change based on their neighbors. A transition rule is denoted $\left(\sigma_{1 a}, \sigma_{2 a}\right) \rightarrow\left(\sigma_{1 b}, \sigma_{2 b}\right)$ with $\sigma_{1 a}, \sigma_{2 a}, \sigma_{1 b}, \sigma_{2 b} \in \Sigma$. If states $\sigma_{1 a}$ and $\sigma_{2 a}$ are adjacent to each other, they can transition to states $\sigma_{1 b}$ and $\sigma_{2 b}$, respectively. An assembly A is transitionable to an assembly B if there exists two adjacent tiles $A(i), A(i+1) \in A$, two adjacent tiles $B(i), B(i+1) \in B$, a transition rule $\left(A_{\Sigma}(i), A_{\Sigma}(i+1)\right) \rightarrow\left(B_{\Sigma}(i), B_{\Sigma}(i+1)\right) \in \Delta$, and $A(j)=B(j)$ for all $j \neq i, i+1$.
Producibility. We define the set of producible assemblies starting from a set of initial assemblies Λ. For a given 1D Tile Automata system $\Gamma=(\Sigma, \Pi, \Delta)$ and initial assembly set Λ, the set of producible assemblies of Γ, denoted $\operatorname{PROD}_{\Gamma}(\Lambda)$, is defined recursively:

- (Base) $\Lambda \subseteq \operatorname{PROD}_{\Gamma}(\Lambda)$
- (Combinations) For any $A, B \in \operatorname{PROD}_{\Gamma}(\Lambda)$ s.t. A and B are combinable into C, then $C \in \operatorname{PROD}_{\Gamma}(\Lambda)$.
- (Transitions) For any $A \in \operatorname{PROD}_{\Gamma}(\Lambda)$ s.t. A is transitionable into B using $\delta \in \Delta$, then $B \in \operatorname{PROD}_{\Gamma}(\Lambda)$.
For a system Γ, we say $A \rightarrow_{1}^{\Gamma} B$ for assemblies A and B if A is combinable with some producible assembly to form B, if A is transitionable into B, or if $A=$ B. Intuitively, this means that A may grow into assembly B through one or fewer combinations or transitions.
We define the relation \rightarrow^{Γ} to be the transitive closure of \rightarrow_{1}^{Γ}, i.e., $A \rightarrow^{\Gamma} B$ means that A may grow into B through a sequence of combinations and transitions.

Terminal Assemblies. A producible assembly A of a Tile Automata system Γ is terminal provided A is not combinable with any producible assembly of Γ, and A is not transitionable to any producible assembly of Γ. Let $\operatorname{TERM}_{\Gamma}(\Lambda) \subseteq \operatorname{PROD}_{\Gamma}(\Lambda)$ denote the set of producible assemblies of Γ that are terminal.

Unique Assembly. A 1D TA system Γ, starting from initial assemblies Λ, uniquely produces a set of assemblies \mathcal{A} if

- $\mathcal{A}=\operatorname{TERM}_{\Gamma}(\Lambda)$,
- for all $B \in \operatorname{PROD}_{\Gamma}(\Lambda), B \rightarrow^{\Gamma} A$ for some $A \in \mathcal{A}$

2.2 Staged Assembly Model

Here, we define the Staged Assembly model using the definitions from above.
Tile Types and Glues. In the staged assembly model, tiles are defined by their glues. Let G be a set of glues. A tile type is an ordered pair of glues $(w, e) \in G^{2}$ where tile $t=(w, e)$ has west glue w and east glue e. The affinity function Π for the staged assembly model takes as input two tile types $t_{1}=(a, b), t_{2}=(c, d)$ and outputs 1 if $b=c$ and 0 otherwise.

When allowing Flexible Glues we remove the restriction that Π outputs 0 when $b \neq c$ allowing for a general glue function. Note this is equivalent to the affinity function of Tile Automata.
Assembly. An assembly A in a staged assembly system is a sequence of tile types $\left\{t_{1}, t_{2}, t_{3}, \ldots, t_{|A|}\right\}$. Let $A(i)$ be the $i^{t h}$ tile type in assembly A.

Staged Assembly Systems. An r-stage, b-bin mix-graph $M_{r, b}$, is an acyclic r-partite digraph consisting of $r b$ vertices $m_{i, j}$ for $1 \leq i \leq r$ and $1 \leq j \leq b$, and edges of the form $\left(m_{i, j}, m_{i+1, j^{\prime}}\right)$ for some i, j, j^{\prime}. A staged assembly system is a duple $\Upsilon=\left(M_{r, b}, T\right)$ where $M_{r, b}$ is an r-stage, b-bin mix-graph, $T \subset G^{2}$ is a set of tiles types labeled from the set of pairs of glues G.
Two-Handed Assembly and Bins We define the assembly process in terms of bins ${ }^{2}$. Each bin can be considered an instance of a Tile Automata system without transition rules where $\Delta=\emptyset$. However, each bin has a different set of initial assemblies denoted as $\Lambda_{i, j}$ where i is the stage and j is the bin. Let T_{j} be the set of initial tile types in ${ }^{\operatorname{bin}}{ }_{1}{ }^{\Lambda_{1, j}}=\left\{T_{j}\right\}$ (this is a bin in the first stage);
later stage receives an initial set of assemblies consisting of the terminally produced assemblies' bins in the previous stage indicated by the edges of the mix-graph. The output of the staged system is the union of all terminal assemblies from each bin in the final stage. We say this set of output assemblies is uniquely produced if each bin in the staged system uniquely produces its respective set of terminal assemblies.

2.3 Assembly Trees

We may represent the assembly process in a single bin as an assembly tree in the staged model. An example tree can be seen in Figure 3a.
Definition 1 (Assembly Tree). An assembly tree T_{A}^{b}, for a producible assembly A in a bin b, is a binary tree where each node represents a subassembly of A. The root represents assembly A, and each leaf represents an initial assembly of b. Each node can be formed by combining the assemblies represented by the children.

An assembly tree is a Left-Handed Assembly Tree if every assembly that attaches on the right side is an initial assembly. A Right-Handed Assembly Tree is the inverse
${ }^{2}$ Each bin may be seen as an instance of the 2-Handed Assembly Model.

(a) Assembly Tree

(b) Left Handed

(c) Right Handed

Fig. 3: Examples of assembly trees for the same assembly. (a) A balanced tree. (b) A left-handed assembly tree. (c) A right-handed assembly tree.
where every left assembly is an initial assembly. Examples of these two types of trees are in Figures 3b and 3c.

2.4 Colors and Patterns

In this section, we augment the Tile Automata model with the concept of a tile's color being based on the current state. Colors for Staged has been defined in [13]. For a set of color labels C, this is a partition of the states into $|C|$ sets. We only consider constant-sized C. Thus, the color of a tile t is the partition of the tile's state, denoted as $c(t)$.
Definition 2 (Pattern). A pattern P over a set of colors C is a partial mapping of \mathbb{Z} to elements in C. Let $P(z)$ be the color at $z \in \mathbb{Z}$. A scaled pattern $P^{h w}$ is a pattern replacing each pixel within a $1 \times w$ line of pixels.
Definition 3 (Patterned Assemblies). We say a positioned assembly A^{\prime} represents a pattern P if for each tile $t \in A^{\prime}, c(t)=P\left(\rho_{A^{\prime}}(t)\right)$ and $\operatorname{dom}\left(A^{\prime}\right)=\operatorname{dom}(P)$. We say a positioned assembly B^{\prime} represents a pattern P at scale $h \times w$ if it represents the scaled pattern $P^{h w}$.

A system Γ uniquely assembles a pattern P if it uniquely assembles an assembly A, such that A contains a positioned assembly that represents P.

2.5 Tile Automata Restrictions

Here we define the relevant restrictions of Tile Automata. All but the last has been defined in previous work $[1,5,8,9]$
Affinity Strengthening. Affinity Strengthening requires that any transition preserves affinities between tiles within assemblies. For each transition rule $\left(\sigma_{a}, \sigma_{b}\right) \rightarrow$ $\left(\sigma_{c}, \sigma_{d}\right), \Pi\left(\sigma_{c}, \sigma_{d}\right)=1$. By limiting our focus to affinity strengthening systems, we
do not need to consider the scenario where a stable assembly becomes unstable (and would fall apart).

Freezing. In a freezing system, a tile may not transition to any state more than once. Thus, if a tile with state σ_{a} transitions into another state σ_{b}, it is not allowed to transition back to σ_{a}.
Bonded. Transitions only occur between tiles that have affinity with each other.
Single-Transition Tile Automata system. Γ is a Single-Transition Tile Automata system if for all transitions rules $\left(S_{1 a}, S_{2 a}, S_{1 b}, S_{2 b}, d\right)$ either $S_{1 a}=S_{1 b}$ or $S_{2 a}=S_{2 b}$.

Bonded, Single-Transition allows us to skip a couple steps in the simulation in the STAM from [8].
Deterministic Transition Rules. A system has deterministic transitions rules if for all pairs of states S_{1}, S_{2} and direction $d \in\{v, h\}$ there only exists one transition rule between the states in that direction.
Color-Locked. A tile automata system is Color-Locked if for every transition rule $\delta=\left(S_{1 a}, S_{2 a}, S_{1 b}, S_{2 b}, d\right) \in \Delta, c\left(S_{1 a}\right)=c\left(S_{1 b}\right)$ and $c\left(S_{2 a}\right)=c\left(S_{2 b}\right)$, i.e. tiles are not allowed to change their color.

This restriction allows for transitions to be independent of the color, we can imagine this the color being inherent to the tile. These restrictions all together can model a signal tile carrying a chemical marker that cannot change, and transitions only expose more binding sites.

3 Simulation of General 1D Staged 392
In this section, we show how to simulate all 1D staged systems with TA systems. First, we define what simulate means for these systems, followed by a high-level overview of our simulation, and then the details.
3.1 Simulation

Here, we utilize a simplified definition of simulation in which the set of final terminal assemblies, from the target staged system to be simulated, is exactly the same, under a mapping function, as the final terminal assemblies of the source TA system that is simulating it. This is a standard type of simulation used, and we omit technical definitions in this version. A stronger definition of simulation incorporates dynamics, in which assemblies may attach in the target system if and only if they attach in the source system. However, our approach focuses on simulating a restricted set of dynamics that are sufficient to ensure the production of all final (and partial) assemblies. We leave the problem of fully simulating the dynamics of a staged system as future work.

3.2 Overview

We create a Tile Automata system with initial tiles representing the initial tile types of the staged system. Each assembly in our Tile Automata system represents an assembly in a specific stage and bin. Each state is a pair consisting of a tile type t and a

(a) Tiles

(b) Assemblies

Fig. 4: (a) Each of our Tile Automata states conceptually represents two glue labels that say which tile type they map to (a glue may be null, as in the leftmost state). They may also contain features such as the left/right cap or the active state token. (b) Assemblies map based on the glue labels on the Tile Automata states. Multiple Tile Automata assemblies represent the same Staged assembly, but sometimes in different stages.
stage-bin label representing t in that specific stage and bin. Some states will have an active state token $\left(^{*}\right)$ used to track the progress of the Tile Automata assembly in the assembly tree. We simulate only left- or right-handed assembly trees based on the parity of the stage number. The logic for the transition rules is described in Algorithm 1 using a Glue-Terminal Table. Each Tile Automata assembly builds according to the assembly trees of the staged system by having the token "read" the glues to decide if an assembly is terminal in a bin and needs to transition to the next stage.

3.3 Glue-Terminal Table

For the simulation to work, we need to know the glues used in each bin of the target system because we cannot "read" the absence of a glue/assembly in self-assembly. However, we can use the Glue-Terminal Table to construct the transition rules. This table stores which glues correspond with each bin.
Definition 4 (Glue-Terminal Table). For a staged system $\Upsilon=\left(M_{r, b}, T\right)$, the GlueTerminal table $G T((s, b), g)$ is a binary $\left|M_{r, b}\right| \times G$ table with rows labeled with stage-bin pairs and columns labeled with glues. The entry $G T((s, b), g)$ is true (Used) if there exists at least two producible assemblies in bin b that attach using glue g in stage s. If it is false (Term.), the glue is never used in bin b for stage s.

This table can be computed recursively by checking the glues of the that are assemblies in the previous bin. Computing terminal assemblies can be done much easier since it's 1D.

3.4 States and Initial Tiles

A state in our Tile Automata system has the following properties: each state has the first two properties and the second two properties are optional. The first label has $s b$ possible options, the second has t, and the rest only increase the state space by a constant factor. This results in an upper bound on the states used of $\mathcal{O}(s b t)$.

- Stage-Bin Label. Each state $(s, i)_{t}$ is labeled with a pair of integers (s, i) saying the state represents the $i^{t h}$ bin in stage s.

```
Algorithm 1 Algorithm to create transition rules for each pair of states in a Tile
        else
            \(b^{\prime} \leftarrow b ; a^{\prime} \leftarrow a \operatorname{STAGE}\left(b^{\prime}\right) \leftarrow \operatorname{STAGE}\left(b^{\prime}\right)+1 ; \operatorname{BIN}\left(b^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(b^{\prime}\right)\)
                \(\operatorname{STAGE}\left(a^{\prime}\right) \leftarrow \operatorname{STAGE}\left(a^{\prime}\right)+1 ; \operatorname{BIN}\left(a^{\prime}\right) \leftarrow \operatorname{NEXT} \_\operatorname{BIN}\left(a^{\prime}\right)\)
    else
        \(b^{\prime} \leftarrow b-* ; a^{\prime} \leftarrow a+* \operatorname{STAGE}\left(a^{\prime}\right) \leftarrow \operatorname{STAGE}\left(a^{\prime}\right)+1 ; \operatorname{BIN}\left(a^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(a^{\prime}\right)\)
Return \((a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)\)
```

Data: Left state a and right state b, and glue-terminal table $G T$. 463
Result: Transition rule $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ if such a rule exists. 464
Let $L(\sigma) / R(\sigma)$ be the left/right glue label of the tile type σ maps to. 465
Let $\operatorname{StAGE}(\sigma)$ be the stage σ is in. Let $\operatorname{BIN}(\sigma)$ be the bin σ is in. 466
Let $\operatorname{NEXT} _\operatorname{BIN}(\sigma)$ be the bin σ will be in the next stage. 467
Let HAS_TOKEN (σ) be true if σ contains a token, false otherwise. 468469
if $R(a) \neq L(b)$ then 470
Return null 471
if HAS _TOKEN $(a) \wedge \operatorname{STAGE}(a)$ is odd then 472
if b has a right cap then 473
if $G T((\operatorname{STAGE}(b), \operatorname{Bin}(b)), R(b))=$ Used then 474
$a^{\prime} \leftarrow a-* ; b^{\prime} \leftarrow b+* ; b^{\prime} \leftarrow b^{\prime}-1$ 475
else if $G T((\operatorname{STAGE}(b)+1, \operatorname{NEXT} \operatorname{BIN}(b)), R(b))=$ Used then 476
$a^{\prime} \leftarrow a-* ; b^{\prime} \leftarrow b-\mid \operatorname{STAGE}\left(b^{\prime}\right) \leftarrow \operatorname{STAGE}\left(b^{\prime}\right)+1 ; \operatorname{BIN}\left(b^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(b^{\prime}\right)$ 477
else 478
$a^{\prime} \leftarrow a ; b^{\prime} \leftarrow b \operatorname{STAGE}\left(a^{\prime}\right) \leftarrow \operatorname{STAGE}\left(a^{\prime}\right)+1 ; \operatorname{BIN}\left(a^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(a^{\prime}\right)$ 479
$\operatorname{STAGE}\left(b^{\prime}\right) \leftarrow \operatorname{STAGE}\left(b^{\prime}\right)+1 ; \operatorname{BIN}\left(b^{\prime}\right) \leftarrow \operatorname{NEXT} _\operatorname{BIN}\left(b^{\prime}\right)$ 480
else$a^{\prime} \leftarrow a-* ; b^{\prime} \leftarrow b+* \operatorname{STAGE}\left(b^{\prime}\right) \leftarrow \operatorname{STAGE}\left(b^{\prime}\right)+1 ; \operatorname{BIN}\left(b^{\prime}\right) \leftarrow \operatorname{NEXT}$ _BIN $\left(b^{\prime}\right)$481
Return $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$482
483if HAS_TOKEN $(b) \wedge \operatorname{STAGE}(b)$ is even then
if a has a left cap then 484
if $G T((\operatorname{STAGE}(a), \operatorname{Bin}(a)), L(a))=$ Used then 485
$b^{\prime} \leftarrow b-* ; a^{\prime} \leftarrow a+* ; a^{\prime} \leftarrow a^{\prime}-\mid$ 486else if $G T((\operatorname{STAGE}(a)+1, \operatorname{NEXT} \operatorname{BIN}(a)), L(a))=$ Used then
$b^{\prime} \leftarrow b-* ; a^{\prime} \leftarrow a-\mid \operatorname{STAGE}\left(a^{\prime}\right) \leftarrow \operatorname{STAGE}\left(a^{\prime}\right)+1 ; \operatorname{BIN}\left(a^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(a^{\prime}\right)$487
489490491492
else$b^{\prime} \leftarrow b-* ; a^{\prime} \leftarrow a+* \operatorname{STAGE}\left(a^{\prime}\right) \leftarrow \operatorname{STAGE}\left(a^{\prime}\right)+1 ; \operatorname{BIN}\left(a^{\prime}\right) \leftarrow \operatorname{NEXT} \operatorname{BIN}\left(a^{\prime}\right)$493494

- Glue Labels. Each state $(s, i)_{t}$ represents a tile t from the staged system. We say this state has the glue labels of t when defining our affinity rules in Tile Automata. This label also defines our mapping from TA states to staged tiles in both directions.
- Active State Token. A state $(s, i)_{t}^{*}$ may have an Active State Token *. The token is used to enforce the left/right handed assembly trees by starting on one side of an assembly, and allowing attachment to other states with matching glue and stage-bin labels.

(a) Staged System

(\mathbf{s}, \mathbf{b})	Red	Blue	Green	Yellow
$(1,1)$	Term	Used	Used	Term
$(1,2)$	Used	Used	Term	Term
$(1,3)$	Used	Term	Term	Used
$(2,1)$	Term	Term	Used	Used

(b) Glue-Terminal Table

Fig. 5: (a) Example Staged system to be simulated. (b) Glue-Terminal Table for shown staged system. In the table, s is the stage and b is the bin.

- Caps. A state may have a cap on one side, denoted $\mid s, i)_{t}$ or $\left(s,\left.i\right|_{t}\right.$. This means that on the side of the cap |, there are no affinity rules for that state. Until an assembly is ready to attach, it will have caps on its left and right most tiles.
We create an initial state for each pair $b_{1, i}, t$ where $b_{1, i}$ is the $i^{t h}$ bin of the first stage and t is a tile input to that bin. If the left glue of the t is used in the $b_{1, i}$, then we include the state ($1, i_{t} \mid$, i.e., the right cap state. If the left glue is open, but the right glue is used, the tile is the first in a left-handed assembly tree. In this case, we include the token left cap state $\left.\mid 1, i_{t}^{*}\right)$.

If a tile is terminal in the first bin, we instead include an initial state representing the first bin where the state is consumed. For example, if a tile t is input to bin $(1, i)$ and is terminal, but its right glue is used in an attachment in bin $(2, j)$ (where there's an edge between $(1, i)$ and $(2, j))$, then we instead include an initial state $\left.\mid 2, j_{t}\right)$.

3.5 Bin Simulation

In any odd stage, we construct every terminal using a sequence of attachments representing a left-handed assembly tree. For even stages, we use a right-handed assembly tree. We control this with the token by defining our affinity rules such that every attachment occurs between one state with the token and one without a cap. We switch between the left and right handed trees to reduce the amount of times the token must walk back and forth on the assembly since the token ends on the opposite side each time.

We walk through an example of a bin in the first stage in Figure 6a. The token left cap state $\left.\mid 1,1_{t}^{*}\right)$ attaches to the right cap state $\left(1,1_{t^{\prime}} \mid\right.$ if t^{\prime} attaches to the right

(a) $(1,1)$

(b) $(1,3)$
terminal. Note that this token walk involves adding an additional distinct state so the tiles do not visit the same state twice.

Simulation. We prove this is a correct simulation by induction on the size of the assemblies. The initial assemblies cover our base case for single tiles in Λ. The tile input in the first stage in Υ ensures each included assembly is in Λ. For the recursive case, assume every assembly $A \in \operatorname{PROD}_{\Upsilon}$ with $|A|<x$ is simulated. Let b be the bin in which A is produced. A must be produced using two assemblies B and C, each of size $<x$, which are also in bin b. From our assumption, B and C have assemblies representing them- $B^{\prime}, C^{\prime} \in \operatorname{PROD}_{\Gamma}(\Lambda)$. Since B and C are produced in the same bin and have matching assemblies B^{\prime} and C^{\prime} with matching tokens, they may combine into an assembly A^{\prime}. A will represent A since it has the same labels.

3.6 Lines

Using Theorem 1, we provide an alternate proof from [5] of length- n lines with $\mathcal{O}(\log n)$ states.
Corollary 1. For all $n \in \mathbb{N}$, there exists a freezing Tile Automata system that uniquely assembles a $1 \times n$ line in $\mathcal{O}(\log n)$ states.
Proof. In [12], it is shown that there exists a staged assembly system that uniquely produces a $1 \times n$ line with 6 tile types, 7 bins, and $\mathcal{O}(\log n)$ stages. From theorem 1, there exists a Freezing Affinity-Strengthening Tile Automata system Γ with $\mathcal{O}(s b t)$ states that simulates any staged system Υ with s stages, b bins and t tile types. Therefore, simulating the staged assembly system from [12] can be done with $\mathcal{O}(\log n)$ states.

4 Freezing Affinity Strengthening

While the results in the previous section imply that you may implement Context FreeGrammar (CFGs) by simulating 1D Staged, here we provide a direct simulation of CFGs. This direct simulation has the advantage of being deterministic and single transition. An example CFG is shown in Figure 7, along with the corresponding TA system in Figure 8. In addition to the freezing and affinity strengthening constraints, this result achieves the feature that tiles never undergo a change in their color throughout the assembly process. We denote rules that adhere to this constraint as color-locked rules.

4.1 Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rules used to generate patterns of strings in a given language. A CFG is defined as a quadruple $G=(V, \Upsilon, R, S) . V$ represents a finite set of non-terminal symbols and Υ is a finite set of terminal symbols. The symbol R is the set of production rules and S is a special variable in V called the start symbol. Production rules R of CFGs are in the form $A \rightarrow B C \mid a$, with V in the left-hand side and V and/or Υ on the right- hand side. A CFG derives a string through recursively replacing nonterminal symbols with terminal and non-terminal symbols based on its production rules.

646

Fig. 7: A restricted context-free grammar (RCFG) G and its corresponding parse tree that produces a pattern $P, \xi \xi \delta \delta \delta \psi$. This is a deterministic grammar, producing only pattern P.

Minimum Context Free Grammars We define the size of a grammar G as the number of symbols in the right hand side rules. Let $C F_{P}$ be the size of the smallest CFG that produces the singleton language $|P|$.

Restricted Context-Free Grammars (RCFG). In this work, we focus on the CFG class used in [13] which they name Restricted CFGs. These restricted grammars produce a singleton language, $|L(G)|=1$ and thus are deterministic. This is the same concept of Context-Free Straight Line grammars from [4]. Each RCFG production rule R contains two symbols on its right-hand side. We can convert any other deterministic CFG to this form with only a constant factor size increase.

Figure 7 presents an example RCFG G and its parse tree that derives a pattern of symbols $P, \xi \xi \delta \delta \delta \psi$. The parse tree shows how internal nodes are non-terminal symbols and leaf nodes contain a terminal symbol whose in-order traversal derives the output string. Notice that since RCFG G is deterministic, each non-terminal symbol $N \in V$ has a unique subpattern $g(N)$ that is defined by taking N to be the start symbol S and applying the production rules. Here, the language or output pattern P of G can be denoted by $L(G)=g(S)$.

4.2 1D Patterned Assembly Construction

We describe our method of simulating a Restricted CFG G with Tile Automata to build a 1D patterned assembly that represents the pattern P derived from G.

Initial Tiles and Producibles. This Tile Automata system, Γ_{G}, begins with creating its initial tiles from the unique terminal symbols, Υ, in RCFG G. In Figure 7, the output pattern P derived from G has three unique terminal symbols ξ, δ, and ψ. Each unique Υ in G is mapped to a distinct color and remains locked to the symbol throughout the construction. From G 's production rule parse tree, internal nodes have two child nodes consisting of two similar or different terminal symbols, Υ. Depending on the placement of the terminal symbols, the initial tiles are designated as L for lefthand side or R for right-hand side. Figure 8a depicts that an initial tile consists of an Υ symbol with its distinct color in an L or R state.

Following G 's parse tree, the initial tiles can combine to build Γ_{G} 's first set of producible assemblies. Grammar G 's production rules can be encoded into system Γ_{G} by providing the affinity rules. If two terminal symbols in G connect to the same internal node in its parse tree, the initial tiles in Γ_{G} that represent the symbols combine to form a producible. The first set of producibles cannot bind to any other tile because

691

Fig. 8: Tile Automata system, Γ_{G}, assembling a 1 D patterned assembly that represents the pattern P produced by the RCFG G shown in Figure 7. (a) Γ_{G} contains initial tiles from the unique terminal symbols of G. Grammar G 's production rules are encoded in Γ_{G} as affinity rules, allowing initial tiles to form the first set of producibles. (b) Following G 's rules, Γ_{G} 's color-locked, one-sided transition rules are applied to the first set of producibles. (c) Subpattern assembly $L_{\delta} D_{\delta} F_{\delta} R_{\psi}$ transitions tiles towards captile R, marking visited tiles. Once the transitions reach captile R, we transition to the left of the subassembly to C_{δ} tiles, removing the marks along the way. (d) RCFG G production rule $Y \rightarrow B C$, directs Γ_{G} to combine B and C subassemblies to build the terminal patterned line assembly, representing pattern P from grammar G.
they are capped with L and R states, which we denote as captiles, and thus are stopped from growing, shown in Figure 8b. Note that these first producibles are subpatterns of P.

Uncapping Producibles. RCFG G production rules tell Γ_{G} how the first producible assemblies will combine to form larger subpatterns of P and ultimately represent the final patterned line assembly. In Γ_{G}, our first set of producibles are composed of L and R captiles. For these producibles to combine with each other, we apply one-sided, color-locked transition rules to uncap each producible, opening their left or right-hand side depending on the nonterminal symbols placement in grammar G 's production rules. For example, in Figure 7 nonterminal C is composed of a D on the left-hand side and F on the right-hand side. In Figure 3.2b, the producible $L_{\delta} R_{\psi}$ represents G 's terminal symbols $\delta \psi$ as well as nonterminal F. Because F sticks to D's right side, a one-sided transition rule is applied to producible $L_{\delta} R_{\psi}$ changing only the pink tile L_{δ} to a new tile F_{δ}, forming next producible $F_{\delta} R_{\psi}$. Here, the color-locked restriction in Γ_{G} applies because the new tile F_{δ} retains its color (pink) that is designated to the terminal symbol δ of P from G. This producible $F_{\delta} R_{\psi}$ is considered a righthanded subassembly because it is uncapped on its left side, allowing it to attach to
the right-hand side of the producible that represents nonterminal D . The rest of Γ_{G} 's first producibles transition according to G 's production rules as shown in Figure 8b.

Transition Walk. Γ_{G} recursively applies G 's production rules to build the other subassemblies needed to represent pattern P. Grammar G 's production rule $C \rightarrow D F$ tells Γ_{G} that there is affinity between D and F , directing producibles $L_{\delta} D_{\delta}$ and $F_{\delta} R_{\psi}$ to combine and form a new subpattern assembly $\delta \delta \delta \psi$ of P, shown at the top of Figure 8c. In Lemma 1, we show how every nonterminal in G is represented as a subpattern assembly produced by Γ_{G}. Subpattern assembly $L_{\delta} D_{\delta} F_{\delta} R_{\psi}$, represents nonterminal C from G and is capped with captiles L and R . From G 's production rules in Figure 7, nonterminal symbol Y is composed of B on the left-hand side and C on right-hand side. To uncap the left side of subpattern $L_{\delta} D_{\delta} F_{\delta} R_{\psi}$, a series of one-sided, color-locked transition rules are applied to turn each tile into a C_{δ} tile making the subassembly uniform, depicted in Figure 8c. The adjacent tiles that have transition rules between them are outlined in purple, with the resulting tiles shown in the subassembly below it.

We apply the method of "walking" across 1D assemblies from [5] to uncap left or right sides of subassemblies. Subpattern assembly $L_{\delta} D_{\delta} F_{\delta} R_{\psi}$ must have an opened left side to attach to subassembly B, so we first transition tiles towards the right side, marking visited tiles with a prime notation. Once the transitions reach captile R , we begin to transition to the left of the subassembly to C_{δ} tiles, removing the prime notations along the way. As shown in Figure 8c, once producibles D and F combine, a one-sided, color-locked transition rule applies changing the F_{δ} tile for a temporary C_{δ}^{\prime} tile, where the prime marks the tile as visited. Next, the adjacent C_{δ}^{\prime} and R_{ψ} tiles transition to remove the prime from the C_{δ}^{\prime} tile, producing subpattern $L_{\delta} D_{\delta} C_{\delta} R_{\psi}$. Another transition is applied between adjacent tiles $D_{\delta} C_{\delta}$ to form the fourth subassembly in Figure 8c. Finally, one more transition occurs between $L_{\delta} C_{\delta}$ to produce subpattern $C_{\delta} C_{\delta} C_{\delta} R_{\psi}$.

Patterned Line Assembly. Figure 8d depicts the subpattern assemblies created by Γ_{G} that represent nonterminal symbols B and C. According to the affinity rules of Γ_{G}, subassemblies B and C combine to form terminal assembly Y. Subassemblies for B and C attach and terminal assembly Y is constructed and capped with captiles L and R on its sides. This new terminal assembly Y represents G 's pattern P, with each distinct colored tile representing unique terminal symbols of pattern P.
Definition 5 (Nonterminal Pattern). For a nonterminal $N \in V$, let $g(N)$ be a substring derived when N is the start symbol of grammar G.
Lemma 1. Each producible assembly in Γ_{G}, created from a $R C F G G=(V, \Upsilon, R, S)$ represents a subpattern $g(N)$ for some symbol N in $V \bigcup \Upsilon$.

Proof. We will prove by induction that any producible assembly B represents a subpattern $g(N)$ for some symbol N in $V \bigcup \Upsilon$.

For the base case, if B is an initial tile, then B represents some terminal symbol $N \in$ Υ. For the inductive step, if B is a larger assembly, then we show B represents a nonterminal $N \in V$. We define the following two recursive cases. B is built from combining subassemblies C and D, we can assume these assemblies represent symbols N_{C} and N_{D} respectively. We know from how we defined our affinity rules if C and D can combine then there is some rule $N \rightarrow N_{C} N_{D}$. Then B represents the pattern $g(N)=$
$g\left(N_{C}\right) \oplus g\left(N_{D}\right) . B$ is producible via transition from an assembly C, B must represent the same subpattern as C since the transition rules do not change the color.

Theorem 2. For any pattern P, there exists a Freezing Tile Automata system Γ with deterministic single transition rules that uniquely assembles P with $\mathcal{O}\left(C F_{P}\right)$ states and 1×1 scale. This system is cycle-free and transition rules do not change the color of tiles.

Proof. By definition, there exists a CFG G that produces P with $|G|=C F_{P}$. We construct the system Γ_{G}. From Lemma 1, each producible assembly B must represent a subpattern $g(N)$ for some symbol N. The only terminal of Γ is the assembly representing the start symbol S since all other assemblies either can attach to another assembly or can transition.

5 Optimal Patterns in Tile Automata

In this section we show that general Tile Automata can obtain Kolmogorov optimal state complexity at 1×1 scale. These first results are achieved by applying the efficient binary string construction from [1], and allowing the additional tiles used by the assembly to fall off, thus leaving only the string. We can then utilize the Turing machine from to simulate a universal Turing Machine. The Turing Machine in was designed to accept/reject an input, so we modify the Turing Machine to print P on the tape and halt.
Lemma 2. For any binary pattern X there exists an affinity strengthening Tile Automata system that uniquely constructs an assembly representing X at scale,

- 4×2 with $\mathcal{O}\left(|X|^{\frac{1}{4}}\right)$ states,
- 3×2 with $\mathcal{O}\left(|X|^{\frac{1}{3}}\right)$ states using single-transition rules, and
- 2×1 with $\mathcal{O}\left(|X|^{\frac{1}{2}}\right)$ states using deterministic single-transition rules and is cycle free.
Proof. These constructions are provided in [1] which shows that there exists a method to encode the bits of a string in the transition rules of the system. Each construction takes advantage of a feature not available in the stricter class of systems. The model shown in this paper however does have seeded growth but a simple extension shows this works with 2-handed production.

Theorem 3. For any pattern P, there exists a Tile Automata system Γ that uniquely assembles P with $\Theta\left(K_{P}^{\frac{1}{4}}\right)$ states at 1×1 scale.
Proof. Given a pattern P, we first consider a Turing machine M that will print P. Using the process described in [5], we create a system $\Gamma_{M}=(\Sigma, \Pi, \Lambda, \Delta, \tau)$ that simulates M. When M has completed printing P, the buffer states B_{L} and B_{R} need to detach. We take Σ and create a copy $\Sigma_{S R}$ which we modify by removing the accept/reject states in favor of final states. For every state $\rho \in \Sigma_{S R}$ where ρ composes P, we create $\rho_{F} \in \Sigma_{S R}$ with affinity only for every other final state. Starting with the rightmost tile that composes P, we add transition rules that will transition each tile with state ρ into their final state equivalent ρ_{F}. Since these final states have no affinity with the buffer states, tiles with those buffer states, and any other state not
considered a final state, will detach from the assembly. This detaching process begins with a transition rule between B_{R} and the rightmost tile with state ρ, turning ρ into ρ_{F}.

From Lemma 2, we encode Γ_{M} in a binary string $b\left(\Gamma_{M}\right)$ and use $b\left(\Gamma_{M}\right)$ to construct system Γ_{S} that uses $\Theta\left(K_{P}^{\frac{1}{4}}\right)$ to assemble $b\left(\Gamma_{M}\right)$. [21] states there exists a universal Turing machine that uses linear space in the amount of space used by the machine being simulated. Γ will simulate a universal Turing machine with Γ_{S} being used to construct the input into Γ, giving us a system that uniquely assembles P with $\Theta\left(K_{P}^{\frac{1}{4}}\right)$ states and 1×1 scale.

5.1 Deterministic Single Transition Turing Machine

The Turing machine from [5] utilizes transition rules that change both tiles in the same step. While [8] shows a way to simulate double rules with single rules, we present a slight modification to the Turing machine construction to make it utilize single rules. Lemma 3. For any pattern P, there exists a Tile Automata system Γ with deterministic single-transition rules that uniquely assembles P with $\mathcal{O}\left(K_{P}\right)$ states and 1×1 scale. This system is cycle free.
Proof. We create a Turing machine M that will print P. Using Turing machine M, we use the process described in [5] to create a system $\Gamma_{D}=(\Sigma, \Pi, \Lambda, \Delta, \tau)$ that simulates M utilizing double-transition rules. We then modify Σ, Δ, and Π into single-transition rule versions $\Sigma_{S R}, \Delta_{S R}$, and $\Pi_{S R}$ as follows.
$\Sigma_{S R}$ and $\Pi_{S R}$ will initially be a copy of Σ and Π respectively, while $\Delta_{S R}$ is populated with every single-transition rule in Δ. For every double-transition rule $\delta=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, d) \in \Delta$, we create an additional state $\omega \in \Sigma_{S R}$. The affinity strength of ω using $\Pi_{S R}$ will be equal to the affinity strength of D using Π for all directions. We take δ and create 3 transition rules $\delta_{S 1}, \delta_{S 2}, \delta_{S 3} \in \Delta_{S}$ defined below.

- $\delta_{S 1}=(\mathrm{A}, \mathrm{B}, \mathrm{A}, \omega, d)$
- $\delta_{S 2}=(\mathrm{A}, \omega, \mathrm{C}, \omega, d)$
- $\delta_{S 3}=(\mathrm{C}, \omega, \mathrm{C}, \mathrm{D}, d)$

We use the final states described in the proof of Theorem 3 to modify $\Sigma_{S R}$ in order to detach the buffer states. Using our modifications, we create a Tile Automata system $\Gamma=\left(\Sigma_{S R}, \Pi_{S R}, \Lambda, \Delta_{S R}, \tau\right)$ with deterministic single-transition rules that uniquely assembles P with $\mathcal{O}\left(K_{P}\right)$ states and 1×1 scale.

Using Lemma 2we can encode the input to a universal Turing machine with square root the number of states with deterministic single transition rules.
Theorem 4. For any pattern P, there exists a Tile Automata system Γ with deterministic single transition rules that uniquely assembles P with $\mathcal{O}\left(K_{P}^{\frac{1}{2}}\right)$ states and 1×1 scale. This system is cycle free.

Proof. We make some modifications to the process used in the proof of Theorem 3 to satisfy the deterministic single-transition rules. We create Γ_{M} using the method described in the proof of Lemma 3 and encode the system in a binary string $b\left(\Gamma_{M}\right) . \Gamma_{S}$ is created using $b\left(\Gamma_{M}\right)$ which will use $\mathcal{O}\left(K_{P}^{\frac{1}{2}}\right)$ as shown in Lemma 2. Γ will simulate a
universal Turing machine that uses the assembly built by Γ_{S}, giving us a system that uniquely assembles P with $\mathcal{O}\left(K_{P}^{\frac{1}{2}}\right)$ states and 1×1 scale.

Other methods for non-deterministic rules and with single and double rules give the following.
Theorem 5. For any pattern P, there exists a Tile Automata system Γ with single transition rules that uniquely assembles P with $\Theta\left(K_{P}^{\frac{1}{3}}\right)$ states and 1×1 scale.

Proof. A deterministic single-rule TA system Γ_{M} can be constructed according to Lemma 3, and using an encoding $b\left(\Gamma_{M}\right)$, we make Γ_{S} which uses $\Theta\left(K_{P}^{\frac{1}{3}}\right)$ states using Lemma 2

5.2 Freezing with Detachment

We do not directly consider Freezing and allowing detachment since the results of [9] shown that any non-freezing system can be simulated by a freezing system by replacing tiles. Also shown in the full version of [5] it was shown freezing Tile Automata with only height 2 assemblies can simulate a general Turing machine. The assembly can then fall apart to achieve 1×1 scale.

6 Affinity Strengthening

As shown in [5], Affinity Strengthening Tile Automata (ASTA) is capable of simulating Linear Bounded Automata (LBA) and that verification in ASTA is PSPACE-Complete. Thus, it makes sense to view this version of the model as the spaced-bounded version of Tile Automata, similar in power to LBAs or Context Sensitive Grammars. We select space-bounded Kolmogorov complexity as our method of bounding the state complexity since we can encode a string and simulate a Turing machine as in the previous section to get an upper bound. The concept of bounded Kolmogorov Complexity was explored in [14]. For these results, we consider building scaled patterns in which each pixel of the pattern is expanded to a $s \times O(1)$ box of pixels. Another way to view this upper bound is that for any algorithm α that outputs P in $f(|P|)$ space, we may construct an assembly representing P of size $\mathcal{O}(f(|P|)$, in $\mathcal{O}(|\alpha|)^{\frac{1}{4}}$ states, where $|\alpha|$ is the number of bits describing α for general Tile Automata. Similar bounds are shown for the other restrictions. It is interesting to point out that with a large enough scale factor we achieve Kolmogorov optimal bounds, including optimal scaled shape constructions as in [16].

6.1 Space Bounded Kolmogorov Complexity

Definition 6 (Space Bounded Kolmogorov Complexity). Given a pattern P, and a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that outputs the space used by a Turing machine, let $K S_{P}(f(|P|))$ be the length of the smallest string that, when input to a universal Turing machine M_{K}, halts with the pattern P on the tape in $f(|P|)$ space.

It was stated in [14] that there exists some optimal Turing machine, which we call M_{K}, that incurs only a constant multiplicative factor increase in the space used. We note for two space bounds $f(|P|)$ and $g(|P|)$, the value $K S_{P}(g(|P|)) \leq K S_{P}(f(|P|))$

1005 .
1005 bits for some constant c. We may store Π as a $|\Sigma| \times|\Sigma|$ table with each $\mathcal{O}(\log \tau)$
1006 bit cell storing their binding strength which is at most τ. The initial tiles Λ can be 1007 encoded with a single bit for each state. Δ is the largest part of the encoding taking $10082|\Sigma|^{4}$ bits. This can be stored as a 4D table where each cell contains two bits (v, h). 1009 The first bit at index $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ being whether or not the states $\left(\sigma_{1}, \sigma_{2}\right)$ transition 1010 to $\left(\sigma_{3}, \sigma_{4}\right)$ vertically and the second bit horizontally. The exact constant achieved is 1011 thus dependent on τ.
1012
Theorem 7. For any pattern P, scale factor $s>0$, there exists an Affinity Strengthening Tile Automata system Γ with single-transition rules that uniquely assembles P with $\mathcal{O}\left(K S_{P}(s|P|)^{\frac{1}{3}}\right)$ states and $s \times 3$ scale.

Proof. Again using the Single-Transition rule Turing machine from the proof of Lemma 3 and the string building result from Lemma 2, we can construct the input to the universal Turing machine M_{K}. The pattern P can be output in $s|P|$ space. We then scale up the pattern to fill the assembly.

Theorem 8. For any pattern P, scale factor $s>0$, there exists an Affinity Strengthening Tile Automata system Γ that uniquely assembles P with $\mathcal{O}\left(K S_{P}(s|P|)^{\frac{1}{4}}\right)$ states and $s \times 4$ scale.

Proof. Lastly using the same method from Lemma 2 we can encode the input to the universal Turing machine in $|X|^{\frac{1}{4}}$ where $|X|$ is the length of the string. This results in an assembly of height 4 as resulting assembly will be of dimensions $|X| \times 4$. The string X can then be input to the Turing machine to print the pattern than scale up.

7 Lower Bounds

We provide lower bounds for general Tile Automata under the three transition rule restrictions. We do this by showing a binary string encoding a Tile Automata system can be passed to a Turing machine to output a patterned assembly, from which the pattern P can be read and output. This means we cannot encode a system in less bits than the Kolmogorov Complexity K_{P}. We achieve similar bounds as [1] as we use the same system for binary string encoding.

For affinity strengthening we provide a lower bound based on the Space Bounded Kolmogorov Complexity defined in Section 6. As with the previous result, we show that a binary string encoding a system can be passed to a Turing machine that outputs the uniquely produced assembly representing the pattern P in $f(|P|)$ space. This means we cannot encode the system in less than $K S_{P}(f(|P|))$ bits. We give an upper bound of $f(n)=\mathcal{O}\left((s|P|)^{2} \log ^{2} s|P|\right)$ in Lemma 4 to compute a pattern scaled by a factor of s. With this we base our lower bounds on $K S_{P}\left((s|P|)^{2} \log ^{2} s|P|\right)$.

7.1 General

Theorem 9. For any Pattern P over constant colors a Tile Automata system Γ that uniquely assembles P at any scale requires $\Omega\left(K_{P}^{\frac{1}{4}}\right)$ states.
.

Consider a Turing machine $M_{T A}$ that takes as input the binary description of a Tile Automata system Γ that uniquely assembles an assembly A and outputs the pattern of A as a string. We can assume $M_{T A}$ can be described in constant bits. The producible assemblies of a Tile Automata system are recursively enumerable. Since we know that Γ uniquely produces P we know there exists a finite number of assemblies as well as the system must be bounded. This makes verifying the terminal assembly is decidable as there's only a finite number of possible Combinations, Breaks, and Transitions to check.

Let M_{K} be the fixed universal Turing machine to define K_{P}, assume there exists a system $\Gamma^{\prime}=\left\{\Sigma^{\prime}, \Pi^{\prime}, \Lambda^{\prime}, \Delta^{\prime}, \tau^{\prime}=\mathcal{O}(1)\right\}$ that uniquely produces the pattern P with $\left|\Sigma^{\prime}\right|<\left(\frac{K_{P}}{c}\right)^{\frac{1}{4}}$ states. Using our encoding method above encode Γ^{\prime} as a binary string $b\left(\Gamma^{\prime}\right)$ with in $\left|b\left(\Gamma^{\prime}\right)\right|<K_{P}$. If we pass $b\left(\Gamma^{\prime}\right)$ along with an encoding of $M_{T A}$ to the universal Turing Machine M_{K} it will simulate the algorithm and output the pattern P. This would mean that M_{K} can produce the pattern with less than $K_{P}+\left|<M_{k}>\right|$ bits which violates the Kolmogorov Complexity so this is not possible.

Theorem 10. For any Pattern P over constant colors, a Tile Automata system Γ with single transition rules that uniquely assembles P at any scale requires $\Omega\left(K_{P}^{\frac{1}{3}}\right)$ states.
Proof. We use the same argument for this proof but show the system can be encoded more efficiently. We can store our transition rules in a $\mathcal{O}\left(|\Sigma|^{3}\right)$ bit table. This is a 3D table where each cells stores 4 bits. The first two indices representing the starting states and the third is the target state. There is only one state since single transition rules only change one rule at a time. The table stores 4 bits in order to store whether they transitions vertically or horizontally, and whether the first or second tile changes to the other state.

Theorem 11. For any Pattern P over constant colors, a Tile Automata system Γ with deterministic transition rules that uniquely assembles P at any scale requires $\Omega\left(\left(\frac{K_{P}}{\log K_{P}}\right)^{\frac{1}{2}}\right)$ states.
Proof. Deterministic rules can be encoded in $\mathcal{O}\left(|\Sigma|^{2} \log |\Sigma|\right)$ bits. To achieve this, store the rules in a $|\Sigma| \times|\Sigma|$ table where each cell stores up to two other pairs of states which takes $\mathcal{O}(\log |\Sigma|)$ bits. We only need to store a constant number of pairs since each pair of states and orientation can only have a single rule. Note that this method can encode single or double transition rules with only a constant factor difference. Applying similar algebra as done for Theorem 9 we have $|\Sigma|=\Omega\left(\left(\frac{K_{P}}{\log K_{P}}\right)^{\frac{1}{2}}\right)$.

1059 Lemma 4. Given a binary string $b(\Gamma)$ describing a directed Tile Automata system Γ, 1060 there exists an algorithm that outputs the uniquely produced assembly $T E R M_{\Gamma}=\{A\}$, 1061 in $\mathcal{O}\left(|A|^{2} \log ^{2}|\Sigma|\right)$ space.

1098

1073 Theorem 12. For all Patterns P, scale factor $s>0$, an Affinity Strengthening Tile 1074 Automata system Γ that uniquely assembles P at scale $n \times m$ for $n m=s$ requires $1075 \Omega\left(K S_{P}\left((s|P|)^{2} \log ^{2} s|P|\right)^{\frac{1}{4}}\right)$ states. bound of $|\Sigma|=\Omega\left(K S_{P}\left((s|P|)^{2} \log ^{2} s|P|\right)^{\frac{1}{3}}\right)$.
Theorem 14. For all Patterns P, scale factor $s>0$, an Affinity Strengthening Tile
1096 Automata system Γ with deterministic transition rules that uniquely assembles P at 1097 scale $n \times m$ for $n m=s$, requires $\Omega\left(\left(\frac{K S\left(P,|P|^{3}\right)}{\log K S_{M}\left(P,|P|^{3}\right)}\right)^{\frac{1}{2}}\right)$ states.
1099 Proof. A deterministic Tile Automata system can be encoded $\mathcal{O}\left(|\Sigma|^{2} \log |\Sigma|\right)$ bits. By
1099 Proof. A deterministic Tile Automata system can be encoded $\mathcal{O}(|\Sigma| \log |\Sigma|)$ bits.
1100 performing the same steps as in Theorem 11 we get $|\Sigma|=\Omega\left(\left(\frac{K S\left(P,|P|^{3}\right)}{\log K S_{M}\left(P,|P|^{3}\right)}\right)^{\frac{1}{2}}\right)$.
Proof. This can be done by making multiple calls to a subroutine that solves the unique assembly verification problem (UAV) for affinity strengthening Tile Automata. For each integer starting at $i=1$, call the algorithm for UAV on each assembly B of size $|B|=i$. If the UAV algorithm returns yes, then return B since $A=B$, i.e. B is the uniquely produced assembly. Storing one of these assembly take $\mathcal{O}(|A| \log |\Sigma|)$ bits and we only need to have stored one at a time and the largest assembly we store is $|A|$ size.

The exact details of the algorithm are shown in [5]. This algorithm only stores a constant number of assemblies at a time each of up to size $2|A|$. We can store an assembly in $|A| \log |\Sigma|$ bits thus giving our bound.

Proof. We can use the same method for encoding Γ into a binary string $b(\Gamma)$ as done in Theorem 9 to achieve $|b(\Gamma)|=\mathcal{O}\left(|\Sigma|^{4}\right)$. We can pass $b(\Gamma)$ along with an algorithm that outputs the pattern P produced by Γ to the universal Turing Machine M_{K}. With this we can bound the length of the string, $|b(\Gamma)| \geq K S_{P}(f(|P|))$ where $f(|P|)$ is the space taken by the algorithm to output P.

From Lemma 4 we know we can output a description of the uniquely produced assembly A in $\mathcal{O}\left(|A|^{2} \log ^{2}|\Sigma|\right)$ space and the pattern can be read and output. A naive implementation can give $|\Sigma| \leq|A|$ by assigning each tile a unique state. The size of the assembly is $|A|=s|P|$, so we can bound the space by the scale factor s and the pattern size $|P|$ giving us $\mathcal{O}\left((s|P|)^{2} \log ^{2} s|P|\right)$. We therefore get $|\Sigma|=\Omega\left(K S_{P}\left((s|P|)^{2} \log ^{2} s|P|\right)^{\frac{1}{4}}\right)$.
Theorem 13. For all Patterns P, scale factor $s>0$, an Affinity Strengthening Tile Automata system Γ with single transition rules that uniquely assembles P at scale $n \times m$ for $n m=s$, requires $\Omega\left(K S_{M}\left(P, s|P|^{3}\right)^{\frac{1}{3}}\right)$ states.
8 Conclusion 1105
In this paper we show how to convert any 1D staged assembly system to an equivalent 11061D freezing Tile Automata system. We then show how this generalizes some previousresults. We then show how a similar techinque can be used to implement CFGs to
110711081109
build patterns. We then described a set of upper and lower bounds for pattern building 1110
based on previous work. There are many interesting directions for future work. 1111

- What is the most efficient method to compute the glue-terminal table? 1112
- Can we improve the number of states needed in the TA simulation? Could it be 1113
reduced to $\mathcal{O}(s t+b t)$ or even $\mathcal{O}(s g+b g)$ where g is the number of glues in the 1114system? What is the lower bound?- Does allowing for 1D scaling help achieve better bounds?1115
1116- Can 1D staged simulate 1D freezing Affinity-Strengthening Tile Automata? I.e.,
1117
are they equivalent? If so, how many tiles, bins, and stages are needed? 1118
- What challenges arise when attempting to generalize this to 2D? The glue- 1119
terminal table must not only store whether or not an assembly is terminal based 1120
on its glues, but also its geometry. What is bror 1121
- What is the lower bound for building patterns in 1D freezing Affinity- 1122
Strengthening Tile Automata? Are there languages that Tile Automata can 1123
assemble more efficiently than staged? 1124

Declarations

Declarations 1126 11261125
Ethical Approval 1281127
Not applicable.
1130
Competing interests 1131
There are no competing interests that we are aware of in reference to this paper. 1133
Authors' contributions1134
These authors contributed equally to this work. 1136
1137
Funding Funding 1138
No external funding was received. 11401141
Availability of data and materials 1142 1143
Data Availability Statement: No Data associated in the manuscript.
Data Availabily Statement: No Data associated in the manuscript. 1144
References1145
1147
[1] Alaniz RM, Caballero D, Cirlos SC, et al (2022) Building squares with optimal 1148state complexity in restricted active self-assembly. In: Proc. of the Symposium on 11491149
Algorithmic Foundations of Dynamic Networks, pp 6:1-6:18 1150
[2] Alumbaugh JC, Daymude JJ, Demaine ED, et al (2019) Simulation of programmable matter systems using active tile-based self-assembly. In: DNA Computing and Molecular Programming, Cham, DNA'19, pp 140-158
[3] Barad G, Amarioarei A, Paun M, et al (2019) Simulation of one dimensional staged dna tile assembly by the signal-passing hierarchical tam. Procedia Computer Science 159:1918-1927
[4] Benz F, Kötzing T (2013) An effective heuristic for the smallest grammar problem. In: Proc. of the 15th Annual Conf. on Genetic and Evolutionary computation, pp 487-494
[5] Caballero D, Gomez T, Schweller R, et al (2020) Verification and Computation in Restricted Tile Automata. In: 26th Inter. Conf. on DNA Computing and Molecular Programming, pp 10:1-10:18
[6] Caballero D, Gomez T, Schweller R, et al (2021) Covert computation in staged self-assembly: Verification is pspace-complete. In: 29th Annual European Symposium on Algorithms, ESA'21, pp 23:1-23:18
[7] Cannon S, Demaine ED, Demaine ML, et al (2013) Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In: 30th Inter. Sym. on Theoretical Aspects of Computer Science, pp 172-184
[8] Cantu AA, Luchsinger A, Schweller R, et al (2020) Signal passing self-assembly simulates tile automata. In: 31st Inter. Sym. on Algorithms and Computation, ISAAC'20, pp 53:1-53:17
[9] Chalk C, Luchsinger A, Martinez E, et al (2018) Freezing simulates non-freezing tile automata. In: DNA Computing and Molecular Programming, Cham, pp 155172

10] Chalk C, Martinez E, Schweller R, et al (2018) Optimal staged self-assembly of general shapes. Algorithmica 80(4):1383-1409

11] Chalk C, Martinez E, Schweller R, et al (2019) Optimal staged self-assembly of linear assemblies. Natural Computing 18(3):527-548

12] Demaine ED, Demaine ML, Fekete SP, et al (2008) Staged self-assembly: nanomanufacture of arbitrary shapes with o (1) glues. Natural Computing $7(3): 347-370$

13] Demaine ED, Eisenstat S, Ishaque M, et al (2011) One-dimensional staged selfassembly. In: Proceedings of the 17 th international conference on DNA computing and molecular programming, DNA'11, pp 100-114
[14] Longpré L (1986) Resource bounded kolmogorov complexity, a link between 1197
computational complexity and information theory. Tech. rep., Cornell University 11981199
[15] Schweller R, Winslow A, Wylie T (2019) Verification in staged tile self-assembly. 1200
Natural Computing 18(1):107-117 1201
[16] Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM 1202 1203
Journal on Computing 36(6):1544-15691204
[17] Thubagere AJ, Li W, Johnson RF, et al (2017) A cargo-sorting DNA robot. 1205 1206
Science 357(6356):eaan6558 1207
[18] Tikhomirov G, Petersen P, Qian L (2017) Fractal assembly of micrometre-scale 1208
dna origami arrays with arbitrary patterns. Nature 552(7683):67-71 1209 12091210
[19] Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California 1211
Institute of Technology 1212
[20] Winslow A (2015) Staged self-assembly and polyomino context-free grammars. 12141213
Natural Computing 14(2):293-302 1215
[21] Woods D, Neary T (2009) The complexity of small universal turing machines: A 1216 1217
survey. Theoretical Computer Science 410(4-5):443-450 1218
[22] Woods D, Doty D, Myhrvold C, et al (2019) Diverse and robust molecular 1219 1220algorithms using reprogrammable dna self-assembly. Nature 567(7748):366-372

