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Abstract

Two significant and often competing goals within the field of self-assembly are
minimizing tile types and minimizing human-mediated experimental operations.
The introduction of the Staged Assembly and Single Staged Assembly models,
while successful in the former aim, necessitate an increase in mixing operations
later. In this paper, we investigate building optimal lines as a standard benchmark
shape and building primitive. We show that a restricted version of the 1D Staged
Assembly Model can be simulated by the 1D Freezing Tile Automata model with
the added benefits of the complete automation of stages and completion in a
single bin while maintaining bin parallelism and a competitive number of states
for lines, patterned lines, and context-free grammars.

Keywords: Staged Self-assembly, Tile Automata, Context-Free Grammar, Freezing TA
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1 Introduction

Many molecular programmers dream of designing single-pot reactions in which system
molecules do the entirety of the computational work without any necessary inter-
vention by the experimenter. This is arguably true self-assembly. Yet the power of
experimenter intervention, in the form of mixing and splitting pots over a sequence of
stages, yields power and efficiency in both theory and practice [18] that is currently
unmatched even with some of the most powerful models of active self-assembly. This
paper aims to address this gap in the case of 1-dimensional (1D) assembly by show-
ing how an abstract modeling of operations of experimental stages, termed the Staged
Assembly Model (SAM) [12], can be efficiently simulated by an abstract model of
single-pot active self-assembly, termed Tile Automata (TA) [9].

Tile Automata generalizes passive tile assembly models (such as the two-handed
tile assembly model [7]) by giving tiles dynamic states that update based on local pair-
wise rules, thus making it a model of active self-assembly. The Staged Assembly Model
(SAM) generalizes tile assembly models by the modeling of experimenter-mediated
operations, including the ability to store different portions of the system particles in
separate containers or bins, and the ability to combine separate bins or split the con-
tents of a bin among multiple bins, over a sequence of distinct stages. Previous results
show that both models have substantially increased power over the basic tile self-
assembly models they generalize. In particular, by offloading some of the computation
onto an experimenter responsible for performing the required mixing operations of the
system between stages, SAM can build complex shapes and patterns in near-optimal
complexity with respect to tile types, bin counts, and stage counts [10–13, 20].

In answer to the long-standing open question of whether the substantial power of
the SAM could be efficiently encoded into the reaction rules of an active single-pot
system, this paper shows that in the case of 1-dimensional systems, any staged system
can be encoded into a single-pot TA system with a comparable state and rule space
to the tiles, bins, and stages of the SAM system it simulates. This result provides
a corresponding corollary in TA for any results in 1D staged self-assembly. Further,
this provides a new approach for programming 1D TA systems since designing staged
systems is relatively simple with strong timing guarantees based on separate bins and
stages, whereas programming complex TA systems from scratch can be daunting as
the single-pot nature of the system requires careful attention to race conditions. As
evidence of the power of this new result, we show how several previous results in TA
now become simple corollaries of this new result. Further, we show how a general
linear pattern can be constructed in TA using a number of states linear in the size of
the smallest context-free grammar that produces the target pattern.

1.1 Staged Self-Assembly and Tile Automata

Algorithmic self-assembly emerged from a formalization of Wang Tiles to explore self-
assembling structures. Defined by Winfree in [19], this was partially motivated by new
DNA techniques that allow for the creation of DNA-based ‘tiles’ that can assemble into
lattice structures at the nanoscale [22]. Further experimental work has investigated
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active DNA-based components capable of complex tasks such as sorting molecules
attached to a DNA origami surface [17].

The Staged Tile Assembly Model [12] generalizes the 2-Handed Assembly Model
to allow growth to occur in multiple bins, mixing in a sequence described as stages,
creating the capability to model experimental techniques, such as in [18] where 2D
patterns are built with DNA origami tiles in multiple stages.

Tile Automata was introduced in [9] as a combination of hierarchical passive self-
assembly systems and the active self-assembly of Cellular Automata systems where all
tiles have a transitionable state. Affinity rules define which tiles can bond with each
other based on their states and with how much strength. Starting from singleton tiles
with states, any two producibles in the system may combine if there is enough affinity
between adjacent tiles. Transition rules define state changes that may occur between
two tiles once they are neighbors in an assembly.

Efficient line construction in Tile Automata was briefly studied in [5].

1.2 Related Work

Shape building was the first problem explored when the staged model was introduced
[12]. In the staged model, a constant-sized set of glue types is sufficient to build any
shape by encoding the description in the mix graph. The trade-off between the number
of glues, bins, and stages was further investigated in later work with 1× n, O(1)× n
[11], and general assemblies [10]. The complexity of verifying whether an assembly is
uniquely produced is PSPACE-complete [6, 15].

A restricted class of systems in SAM, called Single Staged Assembly Systems
(SSAS) in [13], requires each bin to only contain one terminal assembly built from two
input assemblies. This restriction eliminates having multiple assemblies built in the
same bin (bin parallelism). The size of the smallest SSAS that builds a 1D pattern P
is equivalent (up to constant factors) to the size of the smallest Context-Free Gram-
mar (CFG) that defines only P. However, when bin parallelism is allowed, staged is
more efficient than CFGs for a specific family of strings.

In [20], they built on previous results and define Polyomino Context-Free Gram-
mars (PCFG), which generalize CFGs to 2D. The size of the smallest staged system
that uniquely produces a patterned assembly is within a log factor of the smallest
PCFG. In some cases, staged is much better.

One strength of Tile Automata is the possibility of being a “unifying” model,
where multiple models can be connected through simulation results. The work that
introduced the model [9] showed that the freezing model, where a tile may never
repeat a state, simulates the non-freezing version of the model. Tile Automata was
shown to simulate a model of programmable matter called Amoebots [2]. The chain of
simulation was further extended in [8] where the Signal-Passing Tile Assembly Model
(STAM) was shown to simulate Tile Automata. Work done in [3] shows how the 1D
STAM can simulate a s stage 1D SSAS system using a single tile with O(s4) glues
types.
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Fig. 1: Informal map of relations between models. Dotted line arrows indicate model
is a special case of the previous. Solid lines indicate simulation results.

Tile Automata Scale States Theorem

Freezing Strengthening 1 O(sbt) Thm.
Freezing Strengthening 2 O(sbg) Thm.

Strengthening 2 O(sg + bg) Open

Table 1: Restricted 1D Tile Automata can simulate
1D Staged model. We allow for 1D scaling. s is number
of states, b is number of bins, g is the number of glues.

Aff Str Cycle Frz. Det. Single Double

Yes Yes No ND O(|P |
1

3 ) 2× 3 [1] O(|P |
1

4 ) 2× 4 [1]

Yes No Yes Det O(|P |
1

2 ) 1× 2 [1] O(|P |
1

2 ) 1× 1 [1]
No Yes Yes Det O(KP ) O(1)×O(1) [5, 8] O(KP ) 1× 1 [5]

No No No Det O(K
1

2

P
) 1× 1 Thm. 4 O(K

1

2

P
) 1× 1 Thm. 4

Yes No No Det O(L
1

2
p ) O(1)× 2 O(L

1

2
p ) O(1)× 1

Yes No Yes ND O(CFP ) 1× 1 Thm 2 O(CFP ) 1× 1 Thm. 2

Table 2: Minimum number of states needed to construct a patterned rectangle over a constant
number of colors representing the 1D pattern P in Affinity Strengthening Tile Automata with
tiles not changing colors. KP is the Kolmogorov complexity of the pattern P , CFP is the size
of the smallest Context Free Grammar that produces the singleton language {P}.

1.3 Our Contributions

We show that the 1D version of Freezing Affinity Strengthening Tile Automata can
simulate the 1D staged assembly model, even with flexible glues (Section 3). The Tile
Automata system uses O(sbt) states for a system with s stages, b bins, and t tile types.

Using this result we inherit the ability to simulate Context-Free Grammars from
the staged model in [13] showing the same upper bound. For the line-building results,
we inherit them from [12]. Additionally using results from [8], these results carry over
to the STAM as well.

This is the full version of a paper presented at UCNC 2023. We include additional
upper and lower bounds on pattern building in different versions of Tile Automata.
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(a) A Tile Automata System

G(o) = 1

G(r) = 1

G(b) = 1
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(b) Staged Self-Assembly Example

Fig. 2: (a) An example of a Tile Automata system Γ. Recursively applying the tran-
sition rules and affinity functions to the initial assemblies of a system yields a set of
producible assemblies. Any producibles that cannot combine with, break into, or tran-
sition to another assembly are considered terminal. Note that none of the transition
rules allow states to change color. (b) A simple staged self-assembly example. The sys-
tem has 3 bins, 3 stages, and 3 tile types, assigned to bins, as shown in the mix graph.
Only terminal assemblies can pass to a successive stage. The result of this system is
the assembly shown in the bin in stage 3.

The result in Section 4 is a direct version of a Context-Free Grammar simulation which
works in a slighty stronger version of Tile Automata, i.e., Theorem 2 works even in the
case of Deterministic Single-Transitions. We additionally include bounds on building
patterns in relaxed versions of Tile Automata and these results are outlined in Table 2.

2 Model and Definitions

We provide simplified definitions for 1D Tile Automata, then define 1D Staged Assem-
bly as a generalization. Refer to previous work [1] and [12] for full definitions of the
models.

2.1 The 1D Tile Automata model (TA)

In this dimensionally restricted version of the model, a Tile Automata system1 is a
triple (Σ,Π,∆) where Σ is an alphabet of state types, Π is an affinity function, and
∆ is a set of transition rules for states in Σ. An example 1D Tile Automata system is
shown in Figure 2.

1Typical TA models are defined with a temperature parameter τ however, with consideration of solely
1D, eliminating the possibility of cooperative binding, we assume τ = 1.
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Tile. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable unit
square placed at point p ∈ Z

1 and has a state of σ ∈ Σ.

Assembly. An assembly A is a sequence of tiles {t1, t2, t3, . . . , t|A|}. Let A(i) and

AΣ(i) represent the ith tile and its state in assembly A, respectively. For a tile t in
assembly A let ρA(t) be the position of t in A.

Affinity Function. An affinity function Π takes an ordered pair in Σ2 as input
and outputs either 0 or 1. The affinity strength between two states for the ordered
orientation is the binary output of the corresponding function. An assembly A is stable
if, for every pair of tiles, Π(AΣ(i), AΣ(i + 1)) = 1. Informally, if all adjacent tiles in
assembly A have an affinity, A is stable. Two assembles, A and B are combinable if
the concatenation of the two assemblies AB = C is also a stable assembly.

Transition Rules. Transition rules allow states to change based on their neighbors.
A transition rule is denoted (σ1a, σ2a)→ (σ1b, σ2b) with σ1a, σ2a, σ1b, σ2b ∈ Σ. If states
σ1a and σ2a are adjacent to each other, they can transition to states σ1b and σ2b,
respectively. An assembly A is transitionable to an assembly B if there exists two
adjacent tiles A(i), A(i + 1) ∈ A, two adjacent tiles B(i), B(i + 1) ∈ B, a transition
rule (AΣ(i), AΣ(i+1))→ (BΣ(i), BΣ(i+1)) ∈ ∆, and A(j) = B(j) for all j ̸= i, i+1.

Producibility. We define the set of producible assemblies starting from a set of initial
assemblies Λ. For a given 1D Tile Automata system Γ = (Σ,Π,∆) and initial assembly
set Λ, the set of producible assemblies of Γ, denoted PRODΓ(Λ), is defined recursively:

• (Base) Λ ⊆ PRODΓ(Λ)
• (Combinations) For any A,B ∈ PRODΓ(Λ) s.t. A and B are combinable into C,
then C ∈ PRODΓ(Λ).

• (Transitions) For any A ∈ PRODΓ(Λ) s.t. A is transitionable into B using δ ∈ ∆,
then B ∈ PRODΓ(Λ).

For a system Γ, we say A →Γ
1 B for assemblies A and B if A is combinable

with some producible assembly to form B, if A is transitionable into B, or if A =
B. Intuitively, this means that A may grow into assembly B through one or fewer
combinations or transitions.
We define the relation →Γ to be the transitive closure of →Γ

1 , i.e., A →
Γ B means

that A may grow into B through a sequence of combinations and transitions.

Terminal Assemblies. A producible assembly A of a Tile Automata system Γ is
terminal provided A is not combinable with any producible assembly of Γ, and A is
not transitionable to any producible assembly of Γ. Let TERMΓ(Λ) ⊆ PRODΓ(Λ) denote
the set of producible assemblies of Γ that are terminal.

Unique Assembly. A 1D TA system Γ, starting from initial assemblies Λ, uniquely
produces a set of assemblies A if

• A = TERMΓ(Λ),
• for all B ∈ PRODΓ(Λ), B →

Γ A for some A ∈ A

6
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2.2 Staged Assembly Model

Here, we define the Staged Assembly model using the definitions from above.

Tile Types and Glues. In the staged assembly model, tiles are defined by their
glues. Let G be a set of glues. A tile type is an ordered pair of glues (w, e) ∈ G2 where
tile t = (w, e) has west glue w and east glue e. The affinity function Π for the staged
assembly model takes as input two tile types t1 = (a, b), t2 = (c, d) and outputs 1 if
b = c and 0 otherwise.

When allowing Flexible Glues we remove the restriction that Π outputs 0 when
b ̸= c allowing for a general glue function. Note this is equivalent to the affinity function
of Tile Automata.

Assembly. An assembly A in a staged assembly system is a sequence of tile types
{t1, t2, t3, . . . , t|A|}. Let A(i) be the ith tile type in assembly A.

Staged Assembly Systems. An r-stage, b-bin mix-graph Mr,b, is an acyclic r-partite
digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the
form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a duple Υ = (Mr,b, T )
where Mr,b is an r-stage, b-bin mix-graph, T ⊂ G2 is a set of tiles types labeled from
the set of pairs of glues G.
Two-Handed Assembly and BinsWe define the assembly process in terms of bins2.
Each bin can be considered an instance of a Tile Automata system without transition
rules where ∆ = ∅. However, each bin has a different set of initial assemblies denoted
as Λi,j where i is the stage and j is the bin. Let Tj be the set of initial tile types in
bin j.
1. Λ1,j = {Tj} (this is a bin in the first stage);

2. For i ≥ 2, Λi,j =
(

⋃

k: (mi−1,k,mi,j)∈Mr,b

TERMΥ(Λi−1,k)
)

.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj . Each bin in any
later stage receives an initial set of assemblies consisting of the terminally produced
assemblies’ bins in the previous stage indicated by the edges of the mix-graph. The
output of the staged system is the union of all terminal assemblies from each bin in
the final stage. We say this set of output assemblies is uniquely produced if each bin
in the staged system uniquely produces its respective set of terminal assemblies.

2.3 Assembly Trees

We may represent the assembly process in a single bin as an assembly tree in the
staged model. An example tree can be seen in Figure 3a.
Definition 1 (Assembly Tree). An assembly tree T bA, for a producible assembly A
in a bin b, is a binary tree where each node represents a subassembly of A. The root
represents assembly A, and each leaf represents an initial assembly of b. Each node
can be formed by combining the assemblies represented by the children.

An assembly tree is a Left-Handed Assembly Tree if every assembly that attaches
on the right side is an initial assembly. A Right-Handed Assembly Tree is the inverse

2Each bin may be seen as an instance of the 2-Handed Assembly Model.
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(a) Assembly Tree (b) Left Handed (c) Right Handed

Fig. 3: Examples of assembly trees for the same assembly. (a) A balanced tree. (b) A
left-handed assembly tree. (c) A right-handed assembly tree.

where every left assembly is an initial assembly. Examples of these two types of trees
are in Figures 3b and 3c.

2.4 Colors and Patterns

In this section, we augment the Tile Automata model with the concept of a tile’s color
being based on the current state. Colors for Staged has been defined in [13]. For a
set of color labels C, this is a partition of the states into |C| sets. We only consider
constant-sized C. Thus, the color of a tile t is the partition of the tile’s state, denoted
as c(t).
Definition 2 (Pattern). A pattern P over a set of colors C is a partial mapping of
Z to elements in C. Let P (z) be the color at z ∈ Z. A scaled pattern Phw is a pattern
replacing each pixel within a 1× w line of pixels.
Definition 3 (Patterned Assemblies). We say a positioned assembly A′ represents a
pattern P if for each tile t ∈ A′, c(t) = P (ρA′(t)) and dom(A′) = dom(P ). We say a
positioned assembly B′ represents a pattern P at scale h×w if it represents the scaled
pattern Phw.

A system Γ uniquely assembles a pattern P if it uniquely assembles an assembly
A, such that A contains a positioned assembly that represents P .

2.5 Tile Automata Restrictions

Here we define the relevant restrictions of Tile Automata. All but the last has been
defined in previous work [1, 5, 8, 9]

Affinity Strengthening. Affinity Strengthening requires that any transition pre-
serves affinities between tiles within assemblies. For each transition rule (σa, σb) →
(σc, σd), Π(σc, σd) = 1. By limiting our focus to affinity strengthening systems, we

8
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do not need to consider the scenario where a stable assembly becomes unstable (and
would fall apart).

Freezing. In a freezing system, a tile may not transition to any state more than once.
Thus, if a tile with state σa transitions into another state σb, it is not allowed to
transition back to σa.

Bonded. Transitions only occur between tiles that have affinity with each other.

Single-Transition Tile Automata system. Γ is a Single-Transition Tile Automata
system if for all transitions rules (S1a, S2a, S1b, S2b, d) either S1a = S1b or S2a = S2b.

Bonded, Single-Transition allows us to skip a couple steps in the simulation in the
STAM from [8].

Deterministic Transition Rules. A system has deterministic transitions rules if for
all pairs of states S1, S2 and direction d ∈ {v, h} there only exists one transition rule
between the states in that direction.

Color-Locked. A tile automata system is Color-Locked if for every transition rule
δ = (S1a, S2a, S1b, S2b, d) ∈ ∆, c(S1a) = c(S1b) and c(S2a) = c(S2b), i.e. tiles are not
allowed to change their color.

This restriction allows for transitions to be independent of the color, we can imagine
this the color being inherent to the tile. These restrictions all together can model a
signal tile carrying a chemical marker that cannot change, and transitions only expose
more binding sites.

3 Simulation of General 1D Staged

In this section, we show how to simulate all 1D staged systems with TA systems. First,
we define what simulate means for these systems, followed by a high-level overview of
our simulation, and then the details.

3.1 Simulation

Here, we utilize a simplified definition of simulation in which the set of final terminal
assemblies, from the target staged system to be simulated, is exactly the same, under
a mapping function, as the final terminal assemblies of the source TA system that is
simulating it. This is a standard type of simulation used, and we omit technical def-
initions in this version. A stronger definition of simulation incorporates dynamics, in
which assemblies may attach in the target system if and only if they attach in the
source system. However, our approach focuses on simulating a restricted set of dynam-
ics that are sufficient to ensure the production of all final (and partial) assemblies. We
leave the problem of fully simulating the dynamics of a staged system as future work.

3.2 Overview

We create a Tile Automata system with initial tiles representing the initial tile types of
the staged system. Each assembly in our Tile Automata system represents an assembly
in a specific stage and bin. Each state is a pair consisting of a tile type t and a

9
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1,1||1,1 2,1*

Glue Labels

Caps

Token

(a) Tiles

1,1||1,1 1,1*

2,1|1,1 1,1

Stage 1

Stage 2

(b) Assemblies

Fig. 4: (a) Each of our Tile Automata states conceptually represents two glue labels
that say which tile type they map to (a glue may be null, as in the leftmost state).
They may also contain features such as the left/right cap or the active state token. (b)
Assemblies map based on the glue labels on the Tile Automata states. Multiple Tile
Automata assemblies represent the same Staged assembly, but sometimes in different
stages.

stage-bin label representing t in that specific stage and bin. Some states will have
an active state token(*) used to track the progress of the Tile Automata assembly in
the assembly tree. We simulate only left- or right-handed assembly trees based on the
parity of the stage number. The logic for the transition rules is described in Algorithm
1 using a Glue-Terminal Table. Each Tile Automata assembly builds according to the
assembly trees of the staged system by having the token “read” the glues to decide if
an assembly is terminal in a bin and needs to transition to the next stage.

3.3 Glue-Terminal Table

For the simulation to work, we need to know the glues used in each bin of the target
system because we cannot “read” the absence of a glue/assembly in self-assembly.
However, we can use the Glue-Terminal Table to construct the transition rules. This
table stores which glues correspond with each bin.
Definition 4 (Glue-Terminal Table). For a staged system Υ = (Mr,b, T ), the Glue-
Terminal table GT ((s, b), g) is a binary |Mr,b|×G table with rows labeled with stage-bin
pairs and columns labeled with glues. The entry GT ((s, b), g) is true (Used) if there
exists at least two producible assemblies in bin b that attach using glue g in stage s. If
it is false (Term.), the glue is never used in bin b for stage s.

This table can be computed recursively by checking the glues of the that are
assemblies in the previous bin. Computing terminal assemblies can be done much
easier since it’s 1D.

3.4 States and Initial Tiles

A state in our Tile Automata system has the following properties: each state has the
first two properties and the second two properties are optional. The first label has
sb possible options, the second has t, and the rest only increase the state space by a
constant factor. This results in an upper bound on the states used of O(sbt).

• Stage-Bin Label. Each state (s, i)t is labeled with a pair of integers (s, i) saying
the state represents the ith bin in stage s.
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Algorithm 1 Algorithm to create transition rules for each pair of states in a Tile
Automata system.

Data: Left state a and right state b, and glue-terminal table GT .
Result: Transition rule (a, b)→ (a′, b′) if such a rule exists.
Let L(σ)/R(σ) be the left/right glue label of the tile type σ maps to.
Let STAGE(σ) be the stage σ is in. Let BIN(σ) be the bin σ is in.
Let NEXT BIN(σ) be the bin σ will be in the next stage.
Let HAS TOKEN(σ) be true if σ contains a token, false otherwise.

if R(a) ̸= L(b) then
Return null

if HAS TOKEN(a) ∧ STAGE(a) is odd then
if b has a right cap then

if GT ((STAGE(b), BIN(b)), R(b)) = Used then
a′ ← a− ∗; b′ ← b+ ∗; b′ ← b′ − |

else if GT ((STAGE(b) + 1, NEXT BIN(b)), R(b)) = Used then
a′ ← a− ∗; b′ ← b− | STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

else
a′ ← a; b′ ← b STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′)
STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

else
a′ ← a− ∗; b′ ← b+ ∗ STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

Return (a, b)→ (a′, b′)
if HAS TOKEN(b) ∧ STAGE(b) is even then

if a has a left cap then
if GT ((STAGE(a), BIN(a)), L(a)) = Used then

b′ ← b− ∗; a′ ← a+ ∗; a′ ← a′ − |
else if GT ((STAGE(a) + 1, NEXT BIN(a)), L(a)) = Used then

b′ ← b−∗; a′ ← a− | STAGE(a′)← STAGE(a′)+ 1; BIN(a′)← NEXT BIN(a′)
else

b′ ← b; a′ ← a STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′)
STAGE(a′)← STAGE(a′) + 1; BIN(a′)← NEXT BIN(a′)

else
b′ ← b− ∗; a′ ← a+ ∗ STAGE(a′)← STAGE(a′) + 1; BIN(a′)← NEXT BIN(a′)

Return (a, b)→ (a′, b′)

• Glue Labels. Each state (s, i)t represents a tile t from the staged system. We
say this state has the glue labels of t when defining our affinity rules in Tile
Automata. This label also defines our mapping from TA states to staged tiles in
both directions.

• Active State Token. A state (s, i)∗t may have an Active State Token ∗. The
token is used to enforce the left/right handed assembly trees by starting on one
side of an assembly, and allowing attachment to other states with matching glue
and stage-bin labels.
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(a) Staged System

(s, b) Red Blue Green Yellow
(1, 1) Term Used Used Term
(1, 2) Used Used Term Term
(1, 3) Used Term Term Used
(2, 1) Term Term Used Used

(b) Glue-Terminal Table

Fig. 5: (a) Example Staged system to be simulated. (b) Glue-Terminal Table for
shown staged system. In the table, s is the stage and b is the bin.

• Caps. A state may have a cap on one side, denoted |s, i)t or (s, i|t. This means
that on the side of the cap |, there are no affinity rules for that state. Until an
assembly is ready to attach, it will have caps on its left and right most tiles.

We create an initial state for each pair b1,i, t where b1,i is the ith bin of the first
stage and t is a tile input to that bin. If the left glue of the t is used in the b1,i, then
we include the state (1, it|, i.e., the right cap state. If the left glue is open, but the
right glue is used, the tile is the first in a left-handed assembly tree. In this case, we
include the token left cap state |1, i∗t ).

If a tile is terminal in the first bin, we instead include an initial state representing
the first bin where the state is consumed. For example, if a tile t is input to bin (1, i)
and is terminal, but its right glue is used in an attachment in bin (2, j) (where there’s
an edge between (1, i) and (2, j)), then we instead include an initial state |2, jt).

3.5 Bin Simulation

In any odd stage, we construct every terminal using a sequence of attachments repre-
senting a left-handed assembly tree. For even stages, we use a right-handed assembly
tree. We control this with the token by defining our affinity rules such that every
attachment occurs between one state with the token and one without a cap. We switch
between the left and right handed trees to reduce the amount of times the token must
walk back and forth on the assembly since the token ends on the opposite side each
time.

We walk through an example of a bin in the first stage in Figure 6a. The token
left cap state |1, 1∗t ) attaches to the right cap state (1, 1t′ | if t

′ attaches to the right
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|1,1* 1,1|

1,1|

|1,1*

1,1|

1,1|

|1,1 1,1*

|1,1 1,1*

2,1|1,1 1,1

(a) (1, 1)

1,3||1,3 1,3*

2,1||1,3 2,1*

2,1|2,1* 2,1

(b) (1, 3)

Fig. 6: (a) Example simulation of an assembly in stage 1. Notice the token moves
leftward through the assembly as it builds to enforce a left handed assembly tree. (b)
Transition for terminal assembly in bin (1, 3). Since the rightmost glue is terminal in
bin (1, 3) the token changes the stage to 2 and starts moving left to remove the cap.

of t. These two states then transition. If the right glue of t′ is used in the bin, the
token moves to that state and removes the cap. This process can then repeat in the
bin. Looking at the next tile t′′, the right glue is unused, and thus, the assembly is
terminal, and the transition should move it to the next stage, now changing directions
as outlined in Figure 6b. The process for defining transitions is described in Algorithm
1; when given two states and the Glue-Transition table, a transition rule is returned if
one would exist in the system. Note that this algorithm is non-deterministic as one bin
may output to multiple bins in the next stage, so a pair of states may have multiple
transition rules.
Theorem 1. For any 1D staged system Υ with flexible glues, s stages, b bins, and t
tile types, there exists a 1D Freezing Affinity-Strengthening Tile Automata system Γ
with O(sbt) states that simulates Υ.

Proof. Consider a staged system Υ = (Mr,b, T ) with s stages, b bins and t tiles types.
Tile Automata system Γ = (Σ,Π,∆) which simulates Υ is defined and discussed below.

State complexity O(sbt). Each tile type in Υ requires a unique state in Γ for every
bin in every stage, resulting in s ·b ·t states. The additional state increase for the token
and caps of each state is constant for a total of O(sbt) states.

Flexible Glues, Freezing and Affinity Strengthening. A state σt ∈ Σ with tile type
t ∈ T has affinity with a state σ′

t ∈ Σ with tile type t′ ∈ T if t attaches to t′ in Υ. With
the affinity function we can encode general glues so we can simulate flexible glues. For
every transition rule δ ∈ ∆, δ does not alter the tile type a state represents since only
the stage, bin, token, or cap are affected.

Every transition rule is freezing and either removes a cap, moves the token forward,
or advances to the next stage. Once a state with a tile type t has lost its cap it can
never regain it. In a single stage, the token may walk over each tile a maximum of
2 times as both sides of the assembly must be checked to decide if the assembly is
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terminal. Note that this token walk involves adding an additional distinct state so the
tiles do not visit the same state twice.

Simulation. We prove this is a correct simulation by induction on the size of the
assemblies. The initial assemblies cover our base case for single tiles in Λ. The tile
input in the first stage in Υ ensures each included assembly is in Λ. For the recursive
case, assume every assembly A ∈ PRODΥ with |A| < x is simulated. Let b be the bin
in which A is produced. A must be produced using two assemblies B and C, each
of size < x, which are also in bin b. From our assumption, B and C have assemblies
representing them- B′, C ′ ∈ PRODΓ(Λ). Since B and C are produced in the same bin
and have matching assemblies B′ and C ′ with matching tokens, they may combine
into an assembly A′. A will represent A since it has the same labels.

3.6 Lines

Using Theorem 1, we provide an alternate proof from [5] of length-n lines with O(log n)
states.
Corollary 1. For all n ∈ N, there exists a freezing Tile Automata system that uniquely
assembles a 1× n line in O(log n) states.

Proof. In [12], it is shown that there exists a staged assembly system that uniquely
produces a 1× n line with 6 tile types, 7 bins, and O(log n) stages. From theorem 1,
there exists a Freezing Affinity-Strengthening Tile Automata system Γ with O(sbt)
states that simulates any staged system Υ with s stages, b bins and t tile types.
Therefore, simulating the staged assembly system from [12] can be done with O(log n)
states.

4 Freezing Affinity Strengthening

While the results in the previous section imply that you may implement Context Free-
Grammar (CFGs) by simulating 1D Staged, here we provide a direct simulation of
CFGs. This direct simulation has the advantage of being deterministic and single tran-
sition. An example CFG is shown in Figure 7, along with the corresponding TA system
in Figure 8. In addition to the freezing and affinity strengthening constraints, this
result achieves the feature that tiles never undergo a change in their color throughout
the assembly process. We denote rules that adhere to this constraint as color-locked
rules.

4.1 Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rules used to generate patterns
of strings in a given language. A CFG is defined as a quadruple G = (V,Υ, R, S). V
represents a finite set of non-terminal symbols and Υ is a finite set of terminal symbols.
The symbol R is the set of production rules and S is a special variable in V called
the start symbol. Production rules R of CFGs are in the form A→ BC|a, with V in
the left-hand side and V and/or Υ on the right- hand side. A CFG derives a string
through recursively replacing nonterminal symbols with terminal and non-terminal
symbols based on its production rules.
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Fig. 7: A restricted context-free grammar (RCFG) G and its corresponding parse tree
that produces a pattern P , ξξδδδψ. This is a deterministic grammar, producing only
pattern P .

Minimum Context Free Grammars We define the size of a grammar G as the
number of symbols in the right hand side rules. Let CFP be the size of the smallest
CFG that produces the singleton language |P |.

Restricted Context-Free Grammars (RCFG). In this work, we focus on the
CFG class used in [13] which they name Restricted CFGs. These restricted grammars
produce a singleton language, |L(G)| = 1 and thus are deterministic. This is the same
concept of Context-Free Straight Line grammars from [4]. Each RCFG production rule
R contains two symbols on its right-hand side. We can convert any other deterministic
CFG to this form with only a constant factor size increase.

Figure 7 presents an example RCFG G and its parse tree that derives a pattern of
symbols P , ξξδδδψ. The parse tree shows how internal nodes are non-terminal symbols
and leaf nodes contain a terminal symbol whose in-order traversal derives the output
string. Notice that since RCFG G is deterministic, each non-terminal symbol N ∈ V
has a unique subpattern g(N) that is defined by taking N to be the start symbol S
and applying the production rules. Here, the language or output pattern P of G can
be denoted by L(G) = g(S).

4.2 1D Patterned Assembly Construction

We describe our method of simulating a Restricted CFG G with Tile Automata to
build a 1D patterned assembly that represents the pattern P derived from G.

Initial Tiles and Producibles. This Tile Automata system, ΓG, begins with
creating its initial tiles from the unique terminal symbols, Υ, in RCFG G. In Figure 7,
the output pattern P derived from G has three unique terminal symbols ξ, δ, and ψ.
Each unique Υ in G is mapped to a distinct color and remains locked to the symbol
throughout the construction. From G’s production rule parse tree, internal nodes have
two child nodes consisting of two similar or different terminal symbols, Υ. Depending
on the placement of the terminal symbols, the initial tiles are designated as L for left-
hand side or R for right-hand side. Figure 8a depicts that an initial tile consists of an
Υ symbol with its distinct color in an L or R state.

Following G’s parse tree, the initial tiles can combine to build ΓG’s first set of
producible assemblies. Grammar G’s production rules can be encoded into system
ΓG by providing the affinity rules. If two terminal symbols in G connect to the same
internal node in its parse tree, the initial tiles in ΓG that represent the symbols combine
to form a producible. The first set of producibles cannot bind to any other tile because
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Fig. 8: Tile Automata system, ΓG, assembling a 1D patterned assembly that repre-
sents the pattern P produced by the RCFG G shown in Figure 7. (a) ΓG contains
initial tiles from the unique terminal symbols of G. Grammar G’s production rules are
encoded in ΓG as affinity rules, allowing initial tiles to form the first set of producibles.
(b) Following G’s rules, ΓG’s color-locked, one-sided transition rules are applied to the
first set of producibles. (c) Subpattern assembly LδDδFδRψ transitions tiles towards
captile R, marking visited tiles. Once the transitions reach captile R, we transition to
the left of the subassembly to Cδ tiles, removing the marks along the way. (d) RCFG
G production rule Y → BC, directs ΓG to combine B and C subassemblies to build
the terminal patterned line assembly, representing pattern P from grammar G.

they are capped with L and R states, which we denote as captiles, and thus are stopped
from growing, shown in Figure 8b. Note that these first producibles are subpatterns
of P .

Uncapping Producibles. RCFG G production rules tell ΓG how the first pro-
ducible assemblies will combine to form larger subpatterns of P and ultimately
represent the final patterned line assembly. In ΓG, our first set of producibles are com-
posed of L and R captiles. For these producibles to combine with each other, we apply
one-sided, color-locked transition rules to uncap each producible, opening their left
or right-hand side depending on the nonterminal symbols placement in grammar G’s
production rules. For example, in Figure 7 nonterminal C is composed of a D on the
left-hand side and F on the right-hand side. In Figure 3.2b, the producible LδRψ rep-
resents G’s terminal symbols δψ as well as nonterminal F. Because F sticks to D’s right
side, a one-sided transition rule is applied to producible LδRψ changing only the pink
tile Lδ to a new tile Fδ, forming next producible FδRψ. Here, the color-locked restric-
tion in ΓG applies because the new tile Fδ retains its color (pink) that is designated
to the terminal symbol δ of P from G. This producible FδRψ is considered a right-
handed subassembly because it is uncapped on its left side, allowing it to attach to
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the right-hand side of the producible that represents nonterminal D. The rest of ΓG’s
first producibles transition according to G’s production rules as shown in Figure 8b.

Transition Walk. ΓG recursively applies G’s production rules to build the other
subassemblies needed to represent pattern P . Grammar G’s production rule C → DF
tells ΓG that there is affinity between D and F, directing producibles LδDδ and FδRψ
to combine and form a new subpattern assembly δδδψ of P , shown at the top of Figure
8c. In Lemma 1, we show how every nonterminal in G is represented as a subpattern
assembly produced by ΓG. Subpattern assembly LδDδFδRψ, represents nonterminal
C from G and is capped with captiles L and R. From G’s production rules in Figure
7, nonterminal symbol Y is composed of B on the left-hand side and C on right-hand
side. To uncap the left side of subpattern LδDδFδRψ, a series of one-sided, color-locked
transition rules are applied to turn each tile into a Cδ tile making the subassembly
uniform, depicted in Figure 8c. The adjacent tiles that have transition rules between
them are outlined in purple, with the resulting tiles shown in the subassembly below it.

We apply the method of ”walking” across 1D assemblies from [5] to uncap left or
right sides of subassemblies. Subpattern assembly LδDδFδRψ must have an opened
left side to attach to subassembly B, so we first transition tiles towards the right
side, marking visited tiles with a prime notation. Once the transitions reach captile
R, we begin to transition to the left of the subassembly to Cδ tiles, removing the
prime notations along the way. As shown in Figure 8c, once producibles D and F
combine, a one-sided, color-locked transition rule applies changing the Fδ tile for a
temporary C ′

δ tile, where the prime marks the tile as visited. Next, the adjacent C ′
δ

and Rψ tiles transition to remove the prime from the C ′
δ tile, producing subpattern

LδDδCδRψ. Another transition is applied between adjacent tiles DδCδ to form the
fourth subassembly in Figure 8c. Finally, one more transition occurs between LδCδ to
produce subpattern CδCδCδRψ.

Patterned Line Assembly. Figure 8d depicts the subpattern assemblies created
by ΓG that represent nonterminal symbols B and C. According to the affinity rules of
ΓG, subassemblies B and C combine to form terminal assembly Y. Subassemblies for
B and C attach and terminal assembly Y is constructed and capped with captiles L
and R on its sides. This new terminal assembly Y represents G’s pattern P , with each
distinct colored tile representing unique terminal symbols of pattern P .
Definition 5 (Nonterminal Pattern). For a nonterminal N ∈ V , let g(N) be a
substring derived when N is the start symbol of grammar G.
Lemma 1. Each producible assembly in ΓG, created from a RCFG G = (V,Υ, R, S)
represents a subpattern g(N) for some symbol N in V

⋃

Υ.

Proof. We will prove by induction that any producible assembly B represents a
subpattern g(N) for some symbol N in V

⋃

Υ.
For the base case, if B is an initial tile, then B represents some terminal symbolN ∈

Υ. For the inductive step, if B is a larger assembly, then we show B represents a non-
terminal N ∈ V . We define the following two recursive cases. B is built from combining
subassemblies C and D, we can assume these assemblies represent symbols NC and
ND respectively. We know from how we defined our affinity rules if C and D can
combine then there is some rule N → NCND. Then B represents the pattern g(N) =
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g(NC)⊕ g(ND). B is producible via transition from an assembly C, B must represent
the same subpattern as C since the transition rules do not change the color.

Theorem 2. For any pattern P , there exists a Freezing Tile Automata system Γ with
deterministic single transition rules that uniquely assembles P with O(CFP ) states
and 1× 1 scale. This system is cycle-free and transition rules do not change the color
of tiles.

Proof. By definition, there exists a CFG G that produces P with |G| = CFP . We
construct the system ΓG. From Lemma 1, each producible assembly B must represent
a subpattern g(N) for some symbol N . The only terminal of Γ is the assembly rep-
resenting the start symbol S since all other assemblies either can attach to another
assembly or can transition.

5 Optimal Patterns in Tile Automata

In this section we show that general Tile Automata can obtain Kolmogorov optimal
state complexity at 1×1 scale. These first results are achieved by applying the efficient
binary string construction from [1], and allowing the additional tiles used by the
assembly to fall off, thus leaving only the string. We can then utilize the Turing
machine from to simulate a universal Turing Machine. The Turing Machine in was
designed to accept/reject an input, so we modify the Turing Machine to print P on
the tape and halt.
Lemma 2. For any binary pattern X there exists an affinity strengthening Tile
Automata system that uniquely constructs an assembly representing X at scale,

• 4× 2 with O(|X|
1

4 ) states,
• 3× 2 with O(|X|

1

3 ) states using single-transition rules, and
• 2× 1 with O(|X|

1

2 ) states using deterministic single-transition rules and is cycle
free.

Proof. These constructions are provided in [1] which shows that there exists a method
to encode the bits of a string in the transition rules of the system. Each construction
takes advantage of a feature not available in the stricter class of systems. The model
shown in this paper however does have seeded growth but a simple extension shows
this works with 2-handed production.

Theorem 3. For any pattern P , there exists a Tile Automata system Γ that uniquely

assembles P with Θ(K
1

4

P ) states at 1× 1 scale.

Proof. Given a pattern P , we first consider a Turing machine M that will print P .
Using the process described in [5], we create a system ΓM = (Σ,Π,Λ,∆, τ) that
simulates M . When M has completed printing P , the buffer states BL and BR need
to detach. We take Σ and create a copy ΣSR which we modify by removing the
accept/reject states in favor of final states. For every state ρ ∈ ΣSR where ρ composes
P , we create ρF ∈ ΣSR with affinity only for every other final state. Starting with
the rightmost tile that composes P , we add transition rules that will transition each
tile with state ρ into their final state equivalent ρF . Since these final states have no
affinity with the buffer states, tiles with those buffer states, and any other state not
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considered a final state, will detach from the assembly. This detaching process begins
with a transition rule between BR and the rightmost tile with state ρ, turning ρ into
ρF .

From Lemma 2, we encode ΓM in a binary string b(ΓM ) and use b(ΓM ) to construct

system ΓS that uses Θ(K
1

4

P ) to assemble b(ΓM ). [21] states there exists a universal
Turing machine that uses linear space in the amount of space used by the machine
being simulated. Γ will simulate a universal Turing machine with ΓS being used to

construct the input into Γ, giving us a system that uniquely assembles P with Θ(K
1

4

P )
states and 1× 1 scale.

5.1 Deterministic Single Transition Turing Machine

The Turing machine from [5] utilizes transition rules that change both tiles in the same
step. While [8] shows a way to simulate double rules with single rules, we present a
slight modification to the Turing machine construction to make it utilize single rules.
Lemma 3. For any pattern P , there exists a Tile Automata system Γ with determin-
istic single-transition rules that uniquely assembles P with O(KP ) states and 1 × 1
scale. This system is cycle free.

Proof. We create a Turing machineM that will print P . Using Turing machineM , we
use the process described in [5] to create a system ΓD = (Σ,Π,Λ,∆, τ) that simulates
M utilizing double-transition rules. We then modify Σ, ∆, and Π into single-transition
rule versions ΣSR, ∆SR, and ΠSR as follows.

ΣSR and ΠSR will initially be a copy of Σ and Π respectively, while ∆SR is
populated with every single-transition rule in ∆. For every double-transition rule
δ = (A,B,C,D, d) ∈ ∆, we create an additional state ω ∈ ΣSR. The affinity strength
of ω using ΠSR will be equal to the affinity strength of D using Π for all directions.
We take δ and create 3 transition rules δS1, δS2, δS3 ∈ ∆S defined below.

• δS1 = (A,B,A, ω, d)
• δS2 = (A, ω,C, ω, d)
• δS3 = (C, ω,C,D, d)
We use the final states described in the proof of Theorem 3 to modify ΣSR in order

to detach the buffer states. Using our modifications, we create a Tile Automata system
Γ = (ΣSR,ΠSR,Λ,∆SR, τ) with deterministic single-transition rules that uniquely
assembles P with O(KP ) states and 1× 1 scale.

Using Lemma 2we can encode the input to a universal Turing machine with square
root the number of states with deterministic single transition rules.
Theorem 4. For any pattern P , there exists a Tile Automata system Γ with deter-

ministic single transition rules that uniquely assembles P with O(K
1

2

P ) states and 1×1
scale. This system is cycle free.

Proof. We make some modifications to the process used in the proof of Theorem 3
to satisfy the deterministic single-transition rules. We create ΓM using the method
described in the proof of Lemma 3 and encode the system in a binary string b(ΓM ). ΓS

is created using b(ΓM ) which will use O(K
1

2

P ) as shown in Lemma 2. Γ will simulate a
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universal Turing machine that uses the assembly built by ΓS , giving us a system that

uniquely assembles P with O(K
1

2

P ) states and 1× 1 scale.

Other methods for non-deterministic rules and with single and double rules give
the following.
Theorem 5. For any pattern P , there exists a Tile Automata system Γ with single

transition rules that uniquely assembles P with Θ(K
1

3

P ) states and 1× 1 scale.

Proof. A deterministic single-rule TA system ΓM can be constructed according to

Lemma 3, and using an encoding b(ΓM ), we make ΓS which uses Θ(K
1

3

P ) states using
Lemma 2

5.2 Freezing with Detachment

We do not directly consider Freezing and allowing detachment since the results of [9]
shown that any non-freezing system can be simulated by a freezing system by replacing
tiles. Also shown in the full version of [5] it was shown freezing Tile Automata with
only height 2 assemblies can simulate a general Turing machine. The assembly can
then fall apart to achieve 1× 1 scale.

6 Affinity Strengthening

As shown in [5], Affinity Strengthening Tile Automata (ASTA) is capable of
simulating Linear Bounded Automata (LBA) and that verification in ASTA is
PSPACE-Complete. Thus, it makes sense to view this version of the model as the
spaced-bounded version of Tile Automata, similar in power to LBAs or Context Sen-
sitive Grammars. We select space-bounded Kolmogorov complexity as our method of
bounding the state complexity since we can encode a string and simulate a Turing
machine as in the previous section to get an upper bound. The concept of bounded
Kolmogorov Complexity was explored in [14]. For these results, we consider building
scaled patterns in which each pixel of the pattern is expanded to a s × O(1) box of
pixels. Another way to view this upper bound is that for any algorithm α that outputs
P in f(|P |) space, we may construct an assembly representing P of size O(f(|P |), in
O(|α|)

1

4 states, where |α| is the number of bits describing α for general Tile Automata.
Similar bounds are shown for the other restrictions. It is interesting to point out that
with a large enough scale factor we achieve Kolmogorov optimal bounds, including
optimal scaled shape constructions as in [16].

6.1 Space Bounded Kolmogorov Complexity

Definition 6 (Space Bounded Kolmogorov Complexity). Given a pattern P , and a
function f : N→ N that outputs the space used by a Turing machine, let KSP (f(|P |))
be the length of the smallest string that, when input to a universal Turing machine
MK , halts with the pattern P on the tape in f(|P |) space.

It was stated in [14] that there exists some optimal Turing machine, which we call
MK , that incurs only a constant multiplicative factor increase in the space used. We
note for two space bounds f(|P |) and g(|P |), the value KSP (g(|P |)) ≤ KSP (f(|P |))
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1 0 0 1 1 1 0 1

(a) Assembly representing input string.

1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1

(b) Universal Turing machine running on
input.

1 0 1 1 1 0 0 1 0 0 1

(c) The pattern is output on the tape.
(d) The pattern scales outward to fill the
assembly.

Fig. 9: (a) It is possible to build assemblies representing binary strings with an efficient
number of states. (b) We can then run a universal Turing machine on the input
increasing the length of the assembly as needed. (c) The Turing machine will halt with
the pattern output on the tape. (d) The pattern will then scale out to fill the assembly.

as using more space allows for more efficient computing of all pattern P , with |P | < c
for some constant c.

6.2 Construction

Figure 9a shows a sketch of the assembly for deterministic Tile Automata using the
string constructions from [1] shown in Lemma 2. The single rule Turing machine can
be modified to never break apart and only increase the tape length, similar to the
PSPACE-hard reduction from [5]. Figure 9b shows an example Turing machine being
run where the tape length is increased.

Once the pattern has been printed or assembled (Figure 9c), there are additional
tiles in the assembly to deal with. However, since we cannot detach tiles, we scale the
pattern. The first step is to expand the length of pattern. If we use s tape cells to print
a pattern |P |, we scale each point in the pattern by c · |P |. This is done with a simple
algorithm implemented in the transition rules. Create a token state that starts at the
leftmost state after the string is printed. Go to each ‘pixel’ and tell it expand once
after first signaling the neighboring cells to move right (to prevent overwriting). We do
this for each pixel in the pattern, push the other states, increase pixel size. The system
repeats this process until all pixels of the pattern are fully expanded, and then they
transition the tiles below them, which results in the patterned assembly of Figure 9d.
Theorem 6. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ with deterministic single transition rules that uniquely
assembles P with O(KSP (s|P |)

1

2 ) states and s× 2 scale. This system is cycle free.

Proof. LetX be the string that when input toM , P is written to the tape in s|P | space.
Using the binary string building results from Lemma 2 we can encode X in O(|X|

1

2 )
states. Then we runM using the single transition rule Turing machine described in the
proof of Lemma 3. This will run and leave the pattern P on the tape states. Consider
a second Turing machine MINC scales up the pattern to fill the width of the tape.
Each pixel is increased by the same amount. The states then copy the color to the
state below it as well. This can be done in a constant number of states. The amount
that each pattern scales by is s|P |

|P | = |P | · (s− 1).
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Theorem 7. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ with single-transition rules that uniquely assembles P
with O(KSP (s|P |)

1

3 ) states and s× 3 scale.

Proof. Again using the Single-Transition rule Turing machine from the proof of Lemma
3 and the string building result from Lemma 2, we can construct the input to the
universal Turing machine MK . The pattern P can be output in s|P | space. We then
scale up the pattern to fill the assembly.

Theorem 8. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ that uniquely assembles P with O(KSP (s|P |)

1

4 ) states
and s× 4 scale.

Proof. Lastly using the same method from Lemma 2 we can encode the input to the
universal Turing machine in |X|

1

4 where |X| is the length of the string. This results in
an assembly of height 4 as resulting assembly will be of dimensions |X|×4. The string
X can then be input to the Turing machine to print the pattern than scale up.

7 Lower Bounds

We provide lower bounds for general Tile Automata under the three transition rule
restrictions. We do this by showing a binary string encoding a Tile Automata system
can be passed to a Turing machine to output a patterned assembly, from which the
pattern P can be read and output. This means we cannot encode a system in less bits
than the Kolmogorov Complexity KP . We achieve similar bounds as [1] as we use the
same system for binary string encoding.

For affinity strengthening we provide a lower bound based on the Space Bounded
Kolmogorov Complexity defined in Section 6. As with the previous result, we show that
a binary string encoding a system can be passed to a Turing machine that outputs the
uniquely produced assembly representing the pattern P in f(|P |) space. This means
we cannot encode the system in less than KSP (f(|P |)) bits. We give an upper bound
of f(n) = O((s|P |)2 log2 s|P |) in Lemma 4 to compute a pattern scaled by a factor of
s. With this we base our lower bounds on KSP ((s|P |)

2 log2 s|P |).

7.1 General

Theorem 9. For any Pattern P over constant colors a Tile Automata system Γ that

uniquely assembles P at any scale requires Ω(K
1

4

P ) states.

Proof. A Tile Automata system Γ = {Σ,Π,Λ,∆, τ = O(1)} can be encoded in < c|Σ|4

bits for some constant c. We may store Π as a |Σ| × |Σ| table with each O(log τ)
bit cell storing their binding strength which is at most τ . The initial tiles Λ can be
encoded with a single bit for each state. ∆ is the largest part of the encoding taking
2|Σ|4 bits . This can be stored as a 4D table where each cell contains two bits (v, h).
The first bit at index σ1, σ2, σ3, σ4 being whether or not the states (σ1, σ2) transition
to (σ3, σ4) vertically and the second bit horizontally. The exact constant achieved is
thus dependent on τ .
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Consider a Turing machine MTA that takes as input the binary description of
a Tile Automata system Γ that uniquely assembles an assembly A and outputs the
pattern of A as a string. We can assume MTA can be described in constant bits. The
producible assemblies of a Tile Automata system are recursively enumerable. Since we
know that Γ uniquely produces P we know there exists a finite number of assemblies
as well as the system must be bounded. This makes verifying the terminal assembly
is decidable as there’s only a finite number of possible Combinations, Breaks, and
Transitions to check.

Let MK be the fixed universal Turing machine to define KP , assume there exists
a system Γ′ = {Σ′,Π′,Λ′,∆′, τ ′ = O(1)} that uniquely produces the pattern P with
|Σ′| < (KP

c
)

1

4 states. Using our encoding method above encode Γ′ as a binary string
b(Γ′) with in |b(Γ′)| < KP . If we pass b(Γ′) along with an encoding of MTA to the
universal Turing Machine MK it will simulate the algorithm and output the pattern
P . This would mean thatMK can produce the pattern with less than KP + | < Mk > |
bits which violates the Kolmogorov Complexity so this is not possible.

Theorem 10. For any Pattern P over constant colors, a Tile Automata system Γ with

single transition rules that uniquely assembles P at any scale requires Ω(K
1

3

P ) states.

Proof. We use the same argument for this proof but show the system can be encoded
more efficiently. We can store our transition rules in a O(|Σ|3) bit table. This is a
3D table where each cells stores 4 bits. The first two indices representing the starting
states and the third is the target state. There is only one state since single transition
rules only change one rule at a time. The table stores 4 bits in order to store whether
they transitions vertically or horizontally, and whether the first or second tile changes
to the other state.

Theorem 11. For any Pattern P over constant colors, a Tile Automata system Γ
with deterministic transition rules that uniquely assembles P at any scale requires

Ω
(

( KP

logKP
)

1

2

)

states.

Proof. Deterministic rules can be encoded in O(|Σ|2 log |Σ|) bits. To achieve this, store
the rules in a |Σ| × |Σ| table where each cell stores up to two other pairs of states
which takes O(log |Σ|) bits. We only need to store a constant number of pairs since
each pair of states and orientation can only have a single rule. Note that this method
can encode single or double transition rules with only a constant factor difference.

Applying similar algebra as done for Theorem 9 we have |Σ| = Ω
(

( KP

logKP
)

1

2

)

.

7.2 Affinity Strengthening

In [5] it was shown that the Unique Assembly Verification Problem (UAV) for affinity
strengthening Tile Automata is solvable in PSPACE. In Lemma we show that given a
binary string b(|Γ|) describing a directed Affinity Strengthening Tile Automata system,
we can produce a description of the uniquely produced assembly A in O(|A|2 log2 |Σ|)
space. We then apply this fact in Theorem 12 to get a state complexity lower bound
based on bounded-space Kolmogorov complexity.
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Lemma 4. Given a binary string b(Γ) describing a directed Tile Automata system Γ,
there exists an algorithm that outputs the uniquely produced assembly TERMΓ = {A},
in O(|A|2 log2 |Σ|) space.

Proof. This can be done by making multiple calls to a subroutine that solves the
unique assembly verification problem (UAV) for affinity strengthening Tile Automata.
For each integer starting at i = 1, call the algorithm for UAV on each assembly B
of size |B| = i. If the UAV algorithm returns yes, then return B since A = B, i.e. B
is the uniquely produced assembly. Storing one of these assembly take O(|A| log |Σ|)
bits and we only need to have stored one at a time and the largest assembly we store
is |A| size.

The exact details of the algorithm are shown in [5]. This algorithm only stores
a constant number of assemblies at a time each of up to size 2|A|. We can store an
assembly in |A| log |Σ| bits thus giving our bound.

Theorem 12. For all Patterns P , scale factor s > 0, an Affinity Strengthening Tile
Automata system Γ that uniquely assembles P at scale n×m for nm = s requires
Ω(KSP ((s|P |)

2 log2 s|P |)
1

4 ) states.

Proof. We can use the same method for encoding Γ into a binary string b(Γ) as done
in Theorem 9 to achieve |b(Γ)| = O(|Σ|4). We can pass b(Γ) along with an algorithm
that outputs the pattern P produced by Γ to the universal Turing MachineMK . With
this we can bound the length of the string, |b(Γ)| ≥ KSP (f(|P |)) where f(|P |) is the
space taken by the algorithm to output P .

From Lemma 4 we know we can output a description of the uniquely produced
assembly A in O(|A|2 log2 |Σ|) space and the pattern can be read and output. A
naive implementation can give |Σ| ≤ |A| by assigning each tile a unique state.
The size of the assembly is |A| = s|P |, so we can bound the space by the scale
factor s and the pattern size |P | giving us O((s|P |)2 log2 s|P |). We therefore get

|Σ| = Ω
(

KSP ((s|P |)
2 log2 s|P |)

1

4

)

.

Theorem 13. For all Patterns P , scale factor s > 0, an Affinity Strengthening Tile
Automata system Γ with single transition rules that uniquely assembles P at scale
n×m for nm = s, requires Ω(KSM (P, s|P |3)

1

3 ) states.

Proof. We may encode a system with single transition rules in |Σ|3 bits so we get a

bound of |Σ| = Ω
(

KSP ((s|P |)
2 log2 s|P |)

1

3

)

.

Theorem 14. For all Patterns P , scale factor s > 0 , an Affinity Strengthening Tile
Automata system Γ with deterministic transition rules that uniquely assembles P at

scale n×m for nm = s, requires Ω
(

( KS(P,|P |3)
logKSM (P,|P |3) )

1

2

)

states.

Proof. A deterministic Tile Automata system can be encoded O(|Σ|2 log |Σ|) bits. By

performing the same steps as in Theorem 11 we get |Σ| = Ω
(

( KS(P,|P |3)
logKSM (P,|P |3) )

1

2

)

.
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8 Conclusion

In this paper we show how to convert any 1D staged assembly system to an equivalent
1D freezing Tile Automata system. We then show how this generalizes some previous
results. We then show how a similar techinque can be used to implement CFGs to
build patterns. We then described a set of upper and lower bounds for pattern building
based on previous work. There are many interesting directions for future work.

• What is the most efficient method to compute the glue-terminal table?
• Can we improve the number of states needed in the TA simulation? Could it be
reduced to O(st + bt) or even O(sg + bg) where g is the number of glues in the
system? What is the lower bound?

• Does allowing for 1D scaling help achieve better bounds?
• Can 1D staged simulate 1D freezing Affinity-Strengthening Tile Automata? I.e.,
are they equivalent? If so, how many tiles, bins, and stages are needed?

• What challenges arise when attempting to generalize this to 2D? The glue-
terminal table must not only store whether or not an assembly is terminal based
on its glues, but also its geometry.

• What is the lower bound for building patterns in 1D freezing Affinity-
Strengthening Tile Automata? Are there languages that Tile Automata can
assemble more efficiently than staged?
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