Skip to main content

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14003))

  • 299 Accesses

Abstract

Two significant and often competing goals within the field of self-assembly are minimizing tile types and minimizing human-mediated experimental operations. The introduction of the Staged Assembly and Single Staged Assembly models, while successful in the former aim, necessitate an increase in mixing operations later. In this paper, we investigate building optimal lines as a standard benchmark shape and building primitive. We show that a restricted version of the 1D Staged Assembly Model can be simulated by the 1D Freezing Tile Automata model with the added benefits of the complete automation of stages and completion in a single bin while maintaining bin parallelism and a competitive number of states for lines, patterned lines, and context-free grammars.

This research was supported in part by National Science Foundation Grant CCF-1817602.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Typical TA models are defined with a temperature parameter \(\tau \) however, with consideration of solely 1D, eliminating the possibility of cooperative binding, we assume \(\tau = 1\).

  2. 2.

    Each bin may be seen as an instance of the 2-Handed Assembly Model.

References

  1. Alaniz, R.M., et al.: Building squares with optimal state complexity in restricted active self-assembly. In: Proceedings of the Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022, vol. 221, pp. 6:1–6:18 (2022)

    Google Scholar 

  2. Alumbaugh, J.C., Daymude, J.J., Demaine, E.D., Patitz, M.J., Richa, A.W.: Simulation of programmable matter systems using active tile-based self-assembly. In: Thachuk, C., Liu, Y. (eds.) DNA 2019. LNCS, vol. 11648, pp. 140–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26807-7_8

    Chapter  Google Scholar 

  3. Barad, G., et al.: Simulation of one dimensional staged dna tile assembly by the signal-passing hierarchical tam. Procedia Comput. Sci. 159, 1918–1927 (2019)

    Article  Google Scholar 

  4. Benz, F., Kötzing, T.: An effective heuristic for the smallest grammar problem. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 487–494 (2013)

    Google Scholar 

  5. Caballero, D., Gomez, T., Schweller, R., Wylie, T.: Verification and computation in restricted tile automata. In: 26th International Conference on DNA Computing and Molecular Programming, DNA 2020, vol. 174, pp. 10:1–10:18 (2020)

    Google Scholar 

  6. Caballero, D., Gomez, T., Schweller, R., Wylie, T.: Covert computation in staged self-assembly: verification is pspace-complete. In: 29th Annual European Symposium on Algorithms, ESA 2021, pp. 23:1–23:18 (2021)

    Google Scholar 

  7. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-assembly in the 2HAM vs. aTAM. In: 30th Inter. Sym. on Theoretical Aspects of Computer Science, STACS 2013, vol. 20, pp. 172–184 (2013)

    Google Scholar 

  8. Cantu, A.A., Luchsinger, A., Schweller, R., Wylie, T.: Signal passing self-assembly simulates tile automata. In: 31st International Symposium on Algorithms and Computation, ISAAC 2020, pp. 53:1–53:17 (2020)

    Google Scholar 

  9. Chalk, C., Luchsinger, A., Martinez, E., Schweller, R., Winslow, A., Wylie, T.: Freezing simulates non-freezing tile automata. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 155–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_10

    Chapter  Google Scholar 

  10. Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Optimal staged self-assembly of general shapes. Algorithmica 80(4), 1383–1409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Optimal staged self-assembly of linear assemblies. Nat. Comput. 18(3), 527–548 (2019). https://doi.org/10.1007/s11047-019-09740-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Demaine, E.D., et al.: Staged self-assembly: nanomanufacture of arbitrary shapes with o (1) glues. Nat. Comput. 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. In: Proceedings of the 17th International Conference on DNA Computing and Molecular Programming, DNA 2011, pp. 100–114 (2011)

    Google Scholar 

  14. Schweller, R., Winslow, A., Wylie, T.: Verification in staged tile self-assembly. Nat. Comput. 18(1), 107–117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thubagere, A.J., et al.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)

    Google Scholar 

  16. Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale dna origami arrays with arbitrary patterns. Nature 552(7683), 67–71 (2017)

    Article  Google Scholar 

  17. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

  18. Winslow, A.: Staged self-assembly and polyomino context-free grammars. Nat. Comput. 14(2), 293–302 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E.: Diverse and robust molecular algorithms using reprogrammable dna self-assembly. Nature 567(7748), 366–372 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cirlos, S.C., Gomez, T., Grizzell, E., Rodriguez, A., Schweller, R., Wylie, T. (2023). Simulation of Multiple Stages in Single Bin Active Tile Self-assembly. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34034-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34033-8

  • Online ISBN: 978-3-031-34034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics