
Uniform Robot Relocation is Hard in only two
Directions even without Obstacles
David Caballero

University of Texas Rio Grande Valley
Angel A. Cantu

Southwest Research Institute
Timothy Gomez

Massachusetts Institute of Technology
Austin Luchsinger

University of Texas Austin
Robert Schweller

University of Texas Rio Grande Valley
Tim Wylie (timothy.wylie@utrgv.edu)

University of Texas Rio Grande Valley

Research Article

Keywords: Relocation, Swarm Robot Motion Planning, Row Relocation, Tilt Model, Global Uniform Signals

Posted Date: December 21st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3762289/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3762289/v1
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.21203/rs.3.rs-3762289/v1
https://creativecommons.org/licenses/by/4.0/

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Uniform Robot Relocation is Hard in only two

Directions even without Obstacles

David Caballero1, Angel A. Cantu2, Timothy Gomez3,

Austin Luchsinger4, Robert Schweller1, Tim Wylie1*†

1*Department of Computer Science, University of Texas Rio Grande
Valley, 1201 W. University Dr., Edinburg, TX, 78539, USA.

2Southwest Research Institute, 6220 Culebra Road, San Antonio, TX,
78238, USA.

3Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA.

4Department of Electrical and Computer Engineering, University of
Texas Austin, 2501 Speedway, C0803, Austin, TX, 78712, USA.

*Corresponding author(s). E-mail(s): timothy.wylie@utrgv.edu;
Contributing authors: david.caballero01@utrgv.edu; acantu@d16.swri.us;

tagomez7@mit.edu; amluchsinger@utexas.edu;
robert.schweller@utrgv.edu;

†These authors contributed equally to this work.

Abstract

Given n robots contained within a square grid surrounded by four walls, we ask
the question of whether it is possible to move a particular robot a to a specific grid
location b by performing a sequence of global step operations in which all robots
move one grid step in the same cardinal direction (if not blocked by a wall or other
blocked robots). We show this problem is NP-complete when restricted to just
two directions (south and west). This answers the simplest fundamental problem
in uniform global unit tilt swarm robotics. We then consider a relaxed version of
this problem in which the goal is to move a robot a to a specific row regardless of
its horizontal placement. We show that if asking about the bottom-most row of
the square grid, then this version of the problem is solvable in polynomial time.
Finally, we discuss several areas for future research and open problems.

Keywords: Relocation, Swarm Robot Motion Planning, Row Relocation, Tilt Model,
Global Uniform Signals

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

1 Introduction

The advanced development of microbots and nanobots has quickly become a signifi-
cant frontier. However, power and computation limitations at these scales often make
autonomous robots infeasible and individually-controlled robots impractical. Thus,
recent attention has focused on controlling large numbers of relatively simple robots.
Examples of large population robot swarms exist, ranging from naturally occurring
magnetotactic bacteria [15–17] to manufactured light-driven nanocars [14, 18]. These
swarms of microbots are uniformly manipulated using external stimuli like light, mag-
netic fields, or gravitational forces. In essence, every agent within the system responds
uniformly to the same global signals. This type of global manipulation also reflects
the mechanics of many types of systems dating back centuries to marble mazes and
other games.

First proposed in 2013 [5], the tilt model consists of movable polyominoes (as
an abstraction of these nanorobots) that exist on a 2D grid board with “open” and
“blocked” spaces. These polyominoes can be manipulated by a global signal, causing
all polyominoes to step a unit distance in the specified direction unless stopped by a
blocked space or another polyomino.

Within this model, the complexity of different problems related to the manipulation
of the set of polyominoes is studied. The reconfiguration problem asks whether one
specified configuration is reachable from another by way of these uniform signals. The
relocation problem asks whether a specific polyomino or tile can be relocated to a
given location (Fig. 1).

Restricted variants of the model are also considered. One of these restrictions
is where the polyominoes are limited to single tiles, greatly limiting the complexity
of interactions between polyominoes. The other notable restrictions are limiting the
global signals to only 2 or 3 directions, and limiting the complexity of the board
geometry, i.e., the arrangement of the blocked spaces.

One of the simplest variants of the model is square board geometry, in which the
blocked spaces are limited to a square border with no internal geometry, global inputs
limited to two directions, and only single tiles. In this simple model, we study the
relocation problem, showing that the problem of whether a tile can be relocated to a
given position is still NP-complete.

1.1 Related Work

Previous research has investigated the manipulation of robot swarms with precise
uniform movements in a 2D environment containing obstacles [5]. In the “Full Tilt”
variant of this model where tiles slide maximally in each specified direction, the com-
plexity of determining the minimum move sequence for reconfiguration [7], as well
as the complexity for Relocation and Reconfiguration [3, 4], have been shown to be
PSPACE-complete. Reconfiguration and Relocation have further been shown to be
NP-complete when the number of possible directions is limited to 2 or 3 [6]. The single
step model, in which robots move a single unit step during each move, was later defined
formally, with work studying the complexity of relocating a specified tile to a specific

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Problem Directions Tile Size Geometry Result Ref.

1st Row Relocation 2/3 1×1 Square P Thm. 2

Row Relocation 2/3 1×1 Square open -

Relocation

2 1×1 Square NP-complete Thm. 1

2/3 1×1 Monotone NP-complete [9]

4 1×1 General PSPACE-complete [10]

4 1×1,1×2 Square PSPACE-complete [10]

Shape 2/3/4 1×1 Square NP-hard [1]

Reconfiguration 4 1× 1 General PSPACE-complete [10]

Table 1: An overview of the complexity results related to the relocation and shape
reconfiguration problems in the single step model. The open problems are row relo-
cation in 2 directions in the square and general relocation in the square with four
directions. Membership in 4 directions is open for both problems.

location on the board, showing that the problem is PSPACE-complete even when lim-
ited to single tiles [10]. The problem of building shapes (adjusting the positions of the
robots in the system to collectively form a specified shape) and the problem of build-
ing specified patterns out of labelled tiles (i.e. moving the robots into locations such
that their labels adhere to a specified shape and pattern) has also been studied, show-
ing that there are board configurations which allow construction of general shapes in
optimal time [11] and patterned shapes in near-optimal time [8].

Previous work has also studied restrictions on this model. The two main restrictions
studied are limiting the number of directions the robots can move in, and limiting the
complexity of the board’s geometry. A hierarchy of board geometries is described in
[4]. It was shown that when limiting the number of available directions to 2 and with
“monotone” board geometry the problem of relocation is NP-complete [9].

The simplest variant of the model, in which there are single tiles in a square
board with no internal obstacles, has not been studied extensively. When all four
directions are allowed, work has shown that the problem of arranging the robots into
a specific shape is NP-hard [1]. Depending on the starting configuration, the tiles can
be compacted in an exponential number of ways. When the tiles get compacted, they
form a permutation group that was studied in detail in [2]. However, the complexity
for relocation and reconfiguration with four directions is still an open question.

1.2 Contributions

We investigate the relocation problem in the single step model. Table 1 shows what
was previously known and how our results relate. We answer an open question about
the simplest version of the problem. We show that relocation when limited to single
tiles, only two directions, and no blocking geometry is still NP-complete. With this in
mind, we have also shown that knowing whether a tile can be relocated to the bottom
row is in P [12], however, whether a tile can reach an arbitrary row is still an open
problem.

3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

We first overview the unit movement (or single step) tilt model in Section 2. In
Section 3 we show that with two directions in the square, relocation is NP-complete.
Finally, we overview the first-row relocation algorithm in Section 4, along with the
difficulties that arise when moving to general row relocation. Finally, several important
open problems are outlined in the conclusion (Section 5).

This work is an extension of a conference version with the hardness proof [13], and
of a 2-page abstract outlining the first row relocation problem [12]. The journal has
extended these in several ways with full details and proofs of the positive result as
well as additional future work and open problems.

2 Preliminaries

We give the model and problem definitions related to single step tilt in an open board.

Board. A board (or workspace) is a rectangular region of the 2D square lattice in
which specific locations are marked as blocked. Formally, an m×n board is a partition
B = (O,X) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O denotes a set of
open locations, and X denotes a set of blocked locations- referred to as “concrete.”
Here, we use the most restrictive geometry in the hierarchy where O is a square and
the only blocked locations are the edges around the board.

Tiles. A tile is a unit square centered on a non-blocked point on a given board.
Formally a tile t stores a coordinate on the board c and is said to occupy c.

Configurations. A configuration is an arrangement of tiles on a board such that there
are no overlaps among tiles, or with blocked board spaces. Formally, a configuration
C = (B,T = {t1, . . . , tk}) consists of a board B and a set of non-overlapping tiles T. We
say two configurations C = (B,T = {t1, . . . , tk}) and C ′ = (B,T′ = {t′

1
, . . . , t′k}) have

the same shape if T and T′ are translations of each other. The shape of a configuration
C is the shape of T.

Step. A step is a way to turn one configuration into another by way of a global signal
that moves all tiles in a configuration one unit in a direction d ∈ {N,E, S,W} when
possible without causing an overlap with a blocked position, or another tile. Formally,
for a configuration C = (B,T), let T′ be the maximal subset of T such that translation
of all tiles in T′ by 1 unit in the direction d induces no overlap with blocked squares
or other tiles. A step in direction d is performed by executing the translation of all
tiles in T′ by 1 unit in that direction.

We say that a configuration C can be directly reconfigured into configuration C ′

(denoted C →1 C ′) if applying one step in some direction d ∈ {N,E, S,W} to C

results in C ′. We define the relation →∗ to be the transitive closure of →1 and say
that C can be reconfigured into C ′ if and only if C →∗ C ′, i.e., C may be reconfigured
into C ′ by way of a sequence of step transformations.

Step Sequence. A step sequence is a series of steps which can be inferred from a
series of directions D = ⟨d1, d2, . . . , dk⟩; each di ∈ D implies a step in that direction.
For simplicity, when discussing a step sequence, we just refer to the series of directions
from which that sequence was derived. Given a starting configuration, a step sequence

4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

(a) Initial (b) ⟨S⟩ (c) ⟨W ⟩ (d) ⟨W ⟩

Fig. 1: An example step sequence. The initial board configuration followed by the
resulting configurations after an ⟨S⟩ step, ⟨W ⟩ step, and then final ⟨W ⟩ step. The red
tile is the one to relocate and the red outline square is the target location.

corresponds to a sequence of configurations based on the step transformation. An
example step sequence ⟨S,W,W ⟩ and the corresponding sequence of configurations
can be seen in Fig. 1.

Relocation. Given a tilt system with an n×n board B, a set of tiles T = {t1, . . . , tm}
where each tl = (x, y) s.t. 1 ≤ l ≤ m, 1 ≤ x ≤ n, and 1 ≤ y ≤ n. Given ti, tj ∈ T,
ti ̸= tj if i ̸= j. For shorthand, we use ti,j for tl = (i, j). For the row or column, we
use tlr and tlc .

Given a specific tile to relocate tR at location (r, c) = (tRr
, tRc

), and a target loca-
tion T = (Tr, Tc), the relocation problem asks whether a series of steps can translate
tR s.t. (tRr

, tRc
) = T .

Definition 1 (Knitting). The knitting row and knitting column are the row and
column of tR. Knitting is the act of performing ⟨W ⟩ movements (or ⟨S⟩) when every
position of the knitting area (row or column) is occupied by a tile. Thus, tR maintains
its position.

3 2-Direction NP-Hard Relocation

We design gadgets that encode truth values of literals for a given 3SAT instance
equation. We provide two step-sequences for ‘assigning’ truth values to variables, which
reconfigure the gadgets into two distinct configurations. A ‘true’ value for a literal is
interpreted as the presence of an ‘output’ tile within a target location in a gadget,
whereas a ‘false’ value is simply the absence of that tile. We group three gadgets
together to create a clause and check for 3SAT satisfiability by counting the number of
output tiles in the gadgets after assigning truth values to all variables. We show that
relocation becomes impossible if step-sequences are used beside the ones provided,
giving us strict control over the outcome of the system. The move directions considered
henceforth are ⟨S,W ⟩.

Layout.

Given a 3SAT instance, we construct a board divided into three regions called the
equation section, relocation section, and helper section (Figure 2). The equation
section is composed of multiple subregions called clause spaces each containing three
gadgets assigned to the three literals for that particular clause. The helper section is
the region next to the equation section that contains floating tiles used to generate

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

equation

section

relocator

section

unassigned

helper

section

c0

c1

cn

tR

Target location

Fig. 2: A high-level view of the layout of the gadgets on the board.

tR

(a) ⟨w, s⟩

tR

(b) ⟨s,w⟩

tR

(c) ⟨s, s⟩

tR

(d) ⟨w,w⟩

Fig. 3: Dashed lines represent tiles that extend to the edges of the board. The figures
show how different combinations of helper tile’s position (green tile) and tR’s position
can generate any forced movement sequence. Each example represents possible posi-
tionings of the helper tile and tR such that the listed move sequence is forced, given
that the helper tile must be placed at the bottom of the board and tR remain adjacent
to the row of tiles.

forced step-sequences. As detailed in Lemma 1, each helper tile must reside at the
bottom of the board in order to geometrically assist the target tile for relocation. The
relocator section consists of a row of tiles extending from the left edge of the board
along with multiple columns of tiles underneath it that extend from the bottom edge
of the board. The target tile tR = (tRr

, tRc
) is defined as the last tile of the row in

the relocator section with target location T = (Tr, Tc) such that Tc = tRc
− 1 and

Tr = |C|+ 2 for a set of clauses C.

Force Moves.

Forcing a step-sequence is achieved by purposely preventing relocation if that sequence
is not used. This is done by either trapping the target tile via geometric blocking
or preventing the target tile from interacting with other tiles needed for relocation.
The columns in the relocator section and helper tiles in the helper section are used

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

s

w
2

w
2

w

s

w

False

True

Ready State

(a) Literal Gadget

s

w
2

w
2

w

s

w

True

False

Ready State

(b) Negated Literal Gadget

Fig. 4: The gadgets are in the ready state at the beginning of each sequence. Both
gadgets are depicted along with how each ‘assign’ step-sequences affect them. We can
track a gadget’s truth value by observing the length of the horizontal pillar such that
it is assigned true if the pillar is lengthened by a single tile after a step-sequence.

together to generate any forced step-sequence (Figure 3). A ⟨W ⟩ move is forced when
the target tile resides just above a column in the relocator section since a ⟨S⟩ move
pushes the row of tiles next to the target tile downwards, making the target tile stuck
above the column. A ⟨S⟩ move is forced when a ⟨W ⟩ move places a helper tile in the
same column as another helper tile, therefore making it impossible to place all helper
tiles at the bottom of the board.
Lemma 1. Every helper tile in the helper section must be placed at the bottom edge
of the board in order to make relocation of the target tile possible.

Proof. The row of tiles adjacent to the target tile prevents it from stepping into the
column before it (moving the tile west), blocking the target tile from entering the
column of the target location. The target tile must eventually break away from the
row by moving on a column of tiles, pushing the row downwards, and moving west into
the column before it. We make this scenario available only once when we check if every
clause of the 3SAT equation is satisfied and stack as many tiles as there are satisfied
clauses beneath the target tile. Similarly, placing every helper tile at the bottom of the
board creates a row of tiles just long enough to occupy a position in the same column
as the target tile. By positioning the target location |C|+ 2 above the bottom of the
board, every clause must be satisfied along with every single helper tile in the helper
section placed at the bottom of the board. The additional tile in the equation comes
from a tile we initialize on the board for the purpose of functionality. If a single helper
tile is not placed at the bottom of the board, the row of helper tiles can not be long
enough to occupy a position in the column of the target tile in the disengage part of
the reduction, therefore relocation becomes impossible.

Gadgets.

Gadgets are composed of ‘pillars’ of tiles that extend from blocked tiles adjacent to the
bottom and left edges of the equation section. We provide two versions of a gadget for
normal and negated literals shown in Figure 4. We define two ‘assign’ step-sequences:
‘assign true’ as ⟨s,w,w,w⟩ and ‘assign false’ as ⟨w, s,w,w⟩ such that the last three

7

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

C1

C2

C0

Cn

xi=x0

xj=x1

xk=x2

3(N-i)

3(N-j)

3(N-k)

3(N)

N

N

N

N

N

3

1
3

1

xi

repeat i times N

3N

3

1
3

1

¬xj

xi

3

1
3

1

xk

3N

Nrepeat j times repeat k times

3N
xj xi

¬xj

xk

xi

¬xj

xk

(a) Nested Gadgets and Clauses

Fig. 5: (a) Depiction of clause c = (x0 ∨ ¬x1 ∨ x2) with N = 3 distinct variables.
Gadgets and clauses are nested inside each other in order to prevent unwanted inter-
vention of their components.

moves are forced. In the reduction, we execute one of the two ‘assign’ step-sequences
for every variable of a given 3SAT equation so that each gadget assigned to a literal
encodes the truth value of that literal in the length of the horizontal pillar. That is,
a gadget (literal) evaluates to true if the horizontal pillar lengthens by one after a
‘assign’ step-sequence is used or false if the pillar remains the same length. The output
position of a gadget is defined as the position on the horizontal pillar that contains, or
does not contain, the additional tile after the ‘assign’ step-sequence. For the gadgets
assigned to literals xi and xj where i < j, we space out the pillars of xj so that when
xi is in the ready state (see Figure 4), the pillars of xj are ⟨s1×j , w3×j⟩ spaces away
from the ready state. This allows us to assign truth values to each variable in order
independently of each other.

Clause Spaces.

For the set of clauses C of a given 3SAT instance, we define the clause space for
clause ci ∈ C as the region on the board with three gadgets assigned to each literal in
ci = (xi, xj , xk). The gadgets are allocated consecutively such that the ‘next’ gadget
encompasses the ‘previous’ gadget by lengthening its pillars with dimensions detailed
in Figure 5. We similarly build each clause space such that the ‘next’ clause space
encompasses the ‘previous’ clause space as shown in Figure 6. With this design, each
clause space functions independently and in parallel with the other clause spaces.

System Output.

Given a sequence of truth assignments for the variables, determining if a clause was
satisfied involves placing as many tiles on a single row in the clause space, called the
clause output, as there are satisfied literals in the clause. To do this, we position floating

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

(a) c = (x0 ∨ ¬x1 ∨ x2) (b) Assign false to x0 ⟨w, s,w,w⟩

(c) Assign true to x1 ⟨s,w,w,w⟩ (d) Assign true to x2

Fig. 6: Given clause c = (x0 ∨ ¬x1 ∨ x2) with distinct variables N = 3. (a) We first
assign ‘false’ to x0, which makes literal gadget x1 move to the ready state. (c-d) We
then assign false and true to x1 and x2, respectively, followed by pushing the output
tiles of the gadget to the clause output row.

columns of tiles called readers that wrap around each gadget output position after the
last variable truth assignment based on the dimensions given in Figure 5. As shown
in Figure 6, this allows us to step south and lengthen the reader by a single tile if the
literal evaluates to true. If at least one reader is lengthened by one, then the clause is
said to be satisfied given that the reader occupies a position in the clause output.

To determine satisfiability of the 3SAT equation, we position horizontal readers
that extend from the relocator section which wrap around each clause output after
using the first readers, seen in Figure 6d. By repeatedly moving west, these readers
are compressed and push out a tile in the relocator section for every satisfied literal
in the clause as shown seen Figure 7d. This way, when the target tile reaches the last
column of the relocator section, the amount of tiles underneath the target tile is at
least the number of satisfied clauses. Similarly, we utilize a reader for the helper tiles
in order to join the two rows and occupy a position underneath the target tile given
that every helper tile is present in the row. If every clause is satisfied, and every helper
tile is placed at the bottom edge of the board, then the target tile can ‘disengage’
with the row of tiles next to it by stepping downwards until compressing with the tiles
beneath it and then relocate to the target location. Similarly, if at least one clause is
unsatisfied, or at least one helper tile was not placed at the bottom edge of the board,
then the target tile can not ‘disengage’ with the row of tiles in the same row as the
target location, and therefore can not relocate. With this, we define the get system
output sequence as ⟨s, w,w,w,w⟩.

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

T

p
re

d
ef

in
ed

 t
il

e

assignassign
get system output

target location

target tile

x0
x1

(x0 ∨ -x1 ∨ -x0)

(-x0 ∨ x1 ∨ -x1)

helper tile reader

(a) Init Board

T

(b) Assign true x0 ⟨s,w,w,w⟩

T

(c) Assign true x1 ⟨s,w,w,w⟩

T

(d) Get System Output

Fig. 7: The sections are not to size and for demonstrative purposes only. (a) Example
of the right side of the board with clauses (x0 ∨¬x1 ∨¬x0) and (¬x0 ∨ x1 ∨¬x1) and
variables N = 2. The first six columns of tiles in the relocation section, together with
the first two helper tiles, generates two assign step-sequences for the variables. (b-c)
Assigning true to both variables makes the 3SAT equation evaluate to true. The last
helper tile and four columns of tiles in the relocator section forces the user to compress
the readers and push out a tile underneath the target tile per satisfied literal.

Lemma 2. Single Step Relocation in a square board with only two directions is NP-
hard.

Proof. We prove this by a reduction from 3SAT. Given a 3SAT instance, we construct
a board divided into three sections called the equation section, helper section, and
relocator section. From Lemma 1, we can generated any ‘forced’ step-sequence by
utilizing helper tiles in the helper section and columns in the relocator section to
create scenarios in which an incorrect step-sequence results in the impossibility of
relocation. With this capability, we design two step-sequences for assigning truth values
to each distinct variable in the 3SAT equation. We force N of any of these two step-
sequences at the beginning of the reduction so that each step-sequence reconfigures
the appropriate gadgets, where N is the number of distinct variables of the 3SAT
instance. Next, we execute the get system output step-sequence, which involves moving
readers around gadget outputs in order to push out as many tiles as there are satisfied
literals to a single row within a clause region. This is followed by a second group of
readers that wrap around clause region outputs and push out a tile in the relocation
section, underneath the target tile, if a particular clause is satisfied. Afterwards, the

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Fig. 8: Initial board example for 3SAT equation (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).
Section details are shown in Figures 9 and 10.

satisfiability of the 3SAT equation is evaluated to true if the number of tiles underneath
the target tile equals to |C|+2. We get |C| tiles if each clause was satisfied and 1 tile
from the helper tiles. The last tile is automatically given since it is pre-initialized on
the board. We can see that if any of these conditions are not met, then relocation is
impossible. That is, relocation of the target tile is possible if and only if every clause
is satisfied and each helper tile is placed at the bottom of the board.

Relocation Membership.

Membership in NP for the particular instance we are considering subtly depends on the
problem definition and encoding. The single step tilt model, as defined, is a set of open
and blocked spaces. Thus, the set of tiles is a subset of those locations, and membership
in NP is straightforward. This was shown in [9]. However, given the nature of the
square board with all spaces open, an alternate formulation of this specific variant of
the problem could take in the dimension of the board, n, encoded in binary, which
would imply the board size is exponential in the input size. Each tile can be encoded
as only its starting location, which can also be encoded in binary. Such an input would
mean the obvious certificate for relocate-ability would no longer be polynomial sized.
Membership in NP is still an open question for this version of the problem.
Lemma 3. Single Step Relocation in a square board with only two directions is in NP
[9].
Theorem 1. Single Step Relocation in a square board with only two directions is
NP-complete.

Proof. Follows from Lemmas 2 and 3.

11

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

(a) Section (a) from Fig. 8 (b) Section (b) from Fig. 8

Fig. 9: Sections (a) and (b) of Figure 8. In (a), we depict how many spaces the
horizontal pillar of each literal gadget is from the ready state. The horizontal reader is
spaced out by 3N in order to account for each variable assignment. (b) The dimensions
for each gadget in the lowest clause space is depicted.

4 Row Relocation

Given that the general relocation problem in the square is hard even with only two
directions, we know relax the problem a bit to solve something more general. Here,
we look at row relocation, which asks if we can move some tile tR to a specific row r

regardless of its column position. We show that first row relocation has a polynomial-
time solution.

To successfully relocate tile tR to the bottom row, it is crucial to ensure that no
other tiles are positioned beneath it. This involves identifying an appropriate empty
column. Subsequently, we use a technique called knitting, which facilitates the move-
ment of the empty column directly below tR. Additionally, we label the board into
distinct sections (refer to Figure 11a). Our strategy includes locating Ec, the empty
column, and assigning counts to the rows. These counts represent the number of tiles
influencing the relocation process. For visual examples of the empty column and the
associated counts, see Figure 11b.

4.1 Formal Definitions

We quickly overview the concepts needed for our algorithm. We have attempted to
make the section fairly independent, and thus some of the definitions are repeated for
convenience.
Definition 2 (Row Relocation). Given a specific tile to relocate tR at location (r, c) =
(tRr

, tRc
), and a target row Tr, the row relocation problem asks whether a series of

transformations can translate tR s.t. tRr
= Tr.

Definition 3 (First Row Relocation). Given a specific tile to relocate tR at loca-
tion (r, c) = (tRr

, tRc
), the first row relocation problem asks whether a series of

transformations can translate tR s.t. tRr
= 1.

12

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

(a) Section (c) from Fig. 8

(b) Section (d) from Fig. 8

Fig. 10: Sections (c) and (d) of Figure 8. (c) Similarly, each vertical pillar is spaced out
given the dimensions depicted. The lower literal gadget in the clause space is provided
with enough horizontal space to allow for all variable assignment step-sequences to
occur without interference from other tiles on the board. (d) The vertical readers’
dimensions for the upper clause space is depicted.

Definition 4 (Knitting). The row between the BL and TL section is the knitting row.
Knitting is the act of performing ⟨W ⟩ movements when every position of the knitting
area is occupied by a tile. Thus, tR maintains its position.
Definition 5 (Empty Column Ec). Given a tilt system board configuration S = (B,T)
and tile tR = (r, c) where tR ∈ T, define Ec = min{k : c ≤ k ≤ n+ 1 s.t. |{ti,j : ti,j ∈
T, i < r, j = k}| = 0}. If all columns in the BR section have tiles, Ec = n + 1 and
enters the board after a west, ⟨W ⟩, movement.
Definition 6 (Counts). Given a tilt system S = (B,T), where B is an n× n grid and
T is a set of tiles each with a location in the grid, and a tile tR ∈ T with location (r, c),

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Top
Left
(TL)

Knitting
Row

Tile to
relocate

Bottom
Left
(BL)

Top

Right

(TR)

Bottom
Right
(BR)

Target Location

(a) Board Sections

1

1

2

2

5

2

2

5

1

2

1

2

4

1

2

0

(b) Example counts

Fig. 11: (a) The board is an n × n square divided into 6 sections based on the tile
to relocate. The four large sections are the Top Left (TL), Top Right (TR), Bottom
Left (BL), and Bottom Right (BR) sections. There is also the knitting area (outlined
in blue) and the tile to relocate (red dot). When we move to general relocation, there
will also be a target spot (red square). (b) Some configurations with the counts for
each row listed to the left and Ec highlighted.

and the target empty column Ec. Define the count of a row k as follows.

Count(T, k, tr,c) =

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < c}|,

if k > r (rows above tR)

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j ≤ c}|,

if k = r (tR row),

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < Ec}|,

if k < r (rows below tR)

Definition 7 (Candidate Row). Given a tilt system board configuration S = (B,T)
and a tile tR ∈ T at location (r, c). The knitting row may contain up to c − 1 tiles.
The closest row (fewest south, ⟨S⟩, movements) in the TL section with a count higher
than the knitting row is the candidate row. Let k be the number of tiles in the knitting
area, k = |{ti,j : ti,j ∈ T, i = r, j < c}|. Then the current candidate row (CR) is

CanRow(T, tr,c) = min{i : i > r, Count(T, i, tr,c) > k}.

CR is the row index, but for notational convenience, we let |CR| be the count of the
candidate row: |CR| = Count(T, CR, tr,c).
Definition 8 (Empty Column Ec). Given a tilt system S = (B,T) and tile tR = (r, c)
where tR ∈ T, define Ec = min{k : c ≤ k ≤ n+ 1 s.t. |{ti,j : ti,j ∈ T, i < r, j = k}| =
0}.

14

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Definition 9 (Counts). Given a tilt system S = (B,T), a tile tR = (r, c) where tR ∈ T,
and Ec, Define the count of a row k as follows.

Count(T, k, tr,c) =

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < c}|, if k > r(above tR)

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j ≤ c}|, if k = r (tR row),

|{ti,j : ti,j ∈ T, i = k, 1 ≤ j < Ec}|, if k < r (below tR)

This basic framework leads to two important lemmas (4, 5). Algorithm 1 ensures
that one of these is eventually met.

4.2 Existence Properties

Using the counts and the knitting area, we have the following two lemmas.
Lemma 4. [Existence] If the count of the knitting area is greater than the counts of
the lower section, then first row relocation is possible.

Proof. Given that the counts in the bottom section correspond to the number of tiles
extending up to the empty column Ec, we infer that when Ec is positioned under the
tile targeted for relocation, the space to the left of every spot in the empty column is
at least as large as the highest count in the lower sections. This arrangement ensures
that each tile in the bottom section can fit to the left of the empty column if we
position the empty column beneath the relocation tile. Therefore, this configuration
allows for the relocation of the tile.

Lemma 5. [Nonexistence] If there exist a count in the bottom sections that is larger
than every count in the TL section and knitting area, then first row relocation is
impossible.

Proof. Assume that the empty column may be translated beneath the relocation tile.
Moreover, consider the best case where the largest count in the TL section resides in
the knitting area. Therefore, by applying a ⟨W ⟩ movement, the relocation tile remains
at the same location on the board. If the empty column is translated beneath the
relocation tile, the area to the left of every position in the empty column is less than
the largest count in the bottom sections. Thus, at least one tile in the bottom sections
must reside in the empty column, which contradicts the assumption that the empty
column is movable beneath the relocation tile.

4.3 Changing the Knitting Row

If neither condition in the lemmas is satisfied, we cannot knit with the tiles in the
knitting row. Define the candidate row as the closest row in the TL section with a
count higher than the knitting row.
Definition 10 (Candidate Row). Given a tilt system board configuration S = (B,T)
and a tile tR ∈ T at location (r, c). The knitting row may contain up to c − 1 tiles.
The closest row (fewest south, ⟨S⟩, movements) in the TL section with a count higher
than the knitting row is the candidate row.

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

1

0

3

0

0

1

1

3

1

0

1

4

0

2

3

2

(a) Tiles in H

1

0

1

0

2

3

2

3

1

0

1

0

2

3

2

2

2

(b) Reducing H

Fig. 12: (a) Tiles that enter the BR section after D movements are included in NR. If
the empty column is occupied by a tile after D movement (i.e., it becomes non-empty),
then every tile between the empty column and the next empty column (shown in red)
are also added to NR. Reducing the number of tiles in H is done by ⟨W ⟩ movement.
(b) Tiles in H that lead towards another tile beneath it are removed from H.

If we make any movements, we may introduce new tiles that must be considered.
We look at new tiles that may enter the BL section (NL) and tiles that may enter in
the BR section (NR). Define the number of ⟨S⟩ movements needed for the candidate
row to enter the knitting area as D. This includes ⟨S⟩ movements needed to get the
relocation tile adjacent to tiles in its column. Thus, for Figure 12a, D = 4 since the
candidate row with count 3, is 3 away from the knitting area, but another ⟨S⟩ move
is needed before the knitting area also stops moving south. Essentially, in order to
make the Candidate Row be on the same row as the tile to relocate, we also need to
do some vertical knitting.

Let H be the set of all tiles in either the TL or BL section that are within D ⟨S⟩
movements from the target row. These are all tiles under the Candidate Row that
could be relocated to the target row. Formal analysis of introducing tiles into NL or
NR is shown below.

4.4 Analysis of NL

Tiles in NR from Moving the Candidate Row. There are two ways we may add
tiles to NR: tiles entering through ⟨S⟩ movements, and tiles that enter because the
first empty column changes (Ec) due to new tiles. We include the set of tiles in TR
that are at most D distance (with ⟨S⟩ moves) from the BR that increase the counts
of the bottom rows (Figure 12a). Note that the BR and TR sections may change if tR
moves. If Ec has tiles after D movements, then we change Ec to the correct column.
Now all tiles that enter the last row after D movements to the left of the new empty
column are included in NR.

4.5 Analysis of NR

Tiles in NL from Moving the Candidate Row. Let NL be the tiles that enter
the BL section through the TL section after D ⟨S⟩ movements. However, we may
be able to reduce this number. Let H be the set of all tiles in either the TL or BL
section that are within D ⟨S⟩ movements from the target row. These are all tiles under
the Candidate Row that could be relocated to the target row. See Figure 12b for an

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

example showing tiles in H that may be removed from H by making ⟨W ⟩ movements
before the ⟨S⟩ movements.

For a tile in H to be stacked on a tile below, the tile below would have to be
adjacent to the wall to another stationary tile, and thus it remains in its position after
⟨W ⟩ movement. With this in mind, we make the following observation.
Lemma 6. If the inclusion of NR in the counts of the lower rows causes any row to
exceed |CR|, then relocation is impossible.

Proof. We prove this by arguing the impossibility of diminishing |NR|. Trivially, the
number of tiles in NR does not diminish with ⟨S⟩ movement. Now, consider a tile
ti,j ∈ NR that arrives at the last row through the open space located directly below
it on the first row. To have this tile not arrive at the open space after D movements,
it must land on another tile (stacking) to the right or left of the open space. If by
some number of ⟨W ⟩ movements, the tile leads towards a tile to the right of the open
space, it follows that the row of tile ti,j is maximized, and therefore the tile ti,j−1

leads towards the location of the open space instead, thus not reducing the number of
paths. On the other hand, if after some ⟨W ⟩ movement, the tile leads towards a tile to
the left of the location the open space, then it follows that the row to the left of the
open space is maximized, and thus relocation is impossible (Lemma 5). Therefore, it
is impossible to reduce |NR|.

Lemma 7. To reduce |H|, it suffices to perform ⟨W ⟩ movements rather than some
combination of ⟨S⟩ and ⟨W ⟩ movements.

Proof. Consider tile ti,j ∈ H and tile ti−1,j−1 that is adjacent to the wall. If tile ti,j
does not reside above ti−1,j−1 when a ⟨W ⟩ movement is performed, then there must
exist a tile ti−1,j that is to the left of ti,j . Note that there will always exist a tile to
the left of ti,j regardless of the number of ⟨S⟩ movement performed. Thus, if tile ti,j ’s
path to the last row could not have been removed by a ⟨W ⟩ movement, then neither
can it be removed with any combination of ⟨W ⟩ and ⟨S⟩ movements. The only manner
that its path to the last row can altered is with tiles residing in the rows beneath it
and in columns to the right of it, which can be moved underneath it with only ⟨W ⟩
movements.

4.6 First Row Relocation Algorithm

When we attempt to get the candidate row tiles on the same row as the tile to relocate,
in order to do knitting, we must consider new tiles added to the BL and BR sections.
If the counts are greater than the count of the candidate row, then we are not able to
get tR to the target row. However, some of the tiles in NL might also be in H and can
possibly be stacked in another column. Thus, if the current CR can not be used due to
the counts, we can try to reduce H and NL by ⟨W ⟩ movements. Thus, we iteratively
attempt this until either we find a solution, or the counts show it is impossible. If
there are larger candidate rows, we can also attempt a larger one (a higher count).

When first row relocation is possible, the sequence is always WuSvW xSy where
u, v, x, y must be determined, but are bounded by n. There are ≤ c − 2 possible
candidate rows, and at most n− r moves to bring any CR to the knitting row.

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

1

2

2

1

5

2

3

5

5

2

3

2

4

2

3

5

(a) Has no solution

1

2

2

1

5

2

4

3

5

2

4

3

2

4

2

3

(b) Knitting solution

Fig. 13: (a) Two examples of configurations where first row relocation is not possible.
(b) Two configuration examples where first row relocation is possible via knitting.

Algorithm 1: First Row Relocation

Data: S = (B,T), where B is an n× n grid and T is a set of tiles each with a
location in the grid, and a tile tr,c ∈ T with location (r, c).

Result: Is First Row Relocation possible?
CR = r; (Set CR to be the knitting row.)
while Lemmas 4 and 5 are unsatisfied do

/*Is it currently possible?*/
Determine Ec and counts for each row;
if Lemma 4 is satisfied then accept;
if Lemma 5 is satisfied then reject;

/*Find and move a candidate row*/
Set candidate row CR;
if ∄ another candidate row then reject;
Calculate D, NR, NL, Ec, and new counts;
if D ⟨S⟩ movements satisfy Lemma 5 then reject (Lemma 6);

/*Can H be reduced?*/
Determine H;
if Lemma 4 is satisfied then accept;
else if Lemma 5 is satisfied then break;
else Perform ⟨W ⟩ movements until H changes (Lemma 7);

if Lemma 4 is satisfied then accept;
if Lemma 5 is satisfied then reject;

Theorem 2. First row relocation of tile tr,c ∈ T on an n × n board can be solved in
O(cn+ c|T|) time.

Proof. The proof is that first row relocation is solvable by Algorithm 1. Essentially,
through ⟨W ⟩ or ⟨S⟩ movements, Either Lemma 4 or 5 must eventually be true. By
Lemma 6, there are only so many ⟨S⟩ movements that can be made, and by Lemma 7,
it suffices to only make ⟨W ⟩ movements to try and reduce tiles in H that might add
to the counts. Thus, any successful sequence is always WuSvW xSy where u, v, x, y

are bounded by n, and there are less than c possible candidate rows. Algorithm 1
guarantees they are tried in succession.

18

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Complexity: Determining the empty column, Ec takes O(T) time to look at all
tiles. Counting takes O(T) time given a linked list implementation where we have a
list of tiles sorted by row and column. There are c possible candidate rows which each
may require up to n W movements to check if they work. Thus, the total number of
steps is at least O(cn). However, for each tile in the TL section, we might need to
change the counts. Thus O(c|T|) is required because we need to redo the counts for
each candidate row.

5 Conclusion

In this work we answered an open question by showing that relocation in the single
step tilt model, even in the most restrictive case with no fixed geometry except the
borders of the space and with only two movement directions, is still NP-complete.
As shown in Table 1, there is now a fairly complete characterization of this problem
in relation to movement direction, tile size, and board geometry. A few important
questions remain, which we overview here.

• Is the relocation problem in the square in NP if the input is specified as the
tile locations and a binary encoded integer for the board size? As mentioned,
membership is not obvious since the number of steps needed may be exponential
in the size of the input.

• In the square with four directions, is single step relocation or shape configuration
in NP? Recent work by [2] outlined the basic permutation groups that occur in
a polyomino under the single step model, but there is no work addressing the
compaction of tiles into different permutation groups. It may be that relocation
is not in NP because an exponential number of moves is necessary to move a tile
into the correct permutation group, move it to the correct spot in a shape, and
then move the shape in the square.

• Following from the previous question, the same reasoning is why membership is
still open for reconfiguration (and why all results in Table 1 are only NP-hard).
Is shape reconfiguration in the square in NP?

• For the single step tilt model in the square, is general row relocation in P or is it
still NP-hard? In [12], they show that knowing whether a tile can relocate to the
bottom row (1st Row Relocation) is in P . It is fairly straightforward to modify
the 1st Row Relocation algorithm to work for the 2nd row, but every additional
row seems to add a higher polynomial. It is clearly bounded by the number of
alternations needed between W and S. If only k alternations are needed, then row
relocation is possible in O(nk), giving a poor FPT algorithm. Can the number of
alternations be bounded by the problem instance for a better FPT?

• Following from the previous question, is there a configuration requiring O(n)
alternations between W and S?

Declarations

Ethical Approval

Not applicable.

19

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Competing interests

There are no competing interests that we are aware of in reference to this paper.

Authors’ contributions

These authors contributed equally to this work.

Funding

No external funding was received.

Availability of data and materials

Data Availability Statement: No Data associated in the manuscript.

References

[1] Akitaya H, Aloupis G, Löffler M, et al (2016) Trash compaction. In: Proc. 32nd
European Workshop on Computational Geometry, pp 107–110

[2] Akitaya HA, Löffler M, Viglietta G (2022) Pushing blocks by sweeping lines. In:
Proc. of the 11th Inter. Conf. on Fun with Algorithms, FUN’22

[3] Balanza-Martinez J, Luchsinger A, Caballero D, et al (2019) Full tilt: Universal
constructors for general shapes with uniform external forces. In: Proc. of the
2019 ACM-SIAM Symposium on Discrete Algorithms, SODA’19, pp 2689–2708,
https://doi.org/10.1137/1.9781611975482.167

[4] Balanza-Martinez J, Gomez T, Caballero D, et al (2020) Hierarchical shape con-
struction and complexity for slidable polyominoes under uniform external forces.
In: Proc. of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA’20,
pp 2625–2641, https://doi.org/10.1137/1.9781611975994.160

[5] Becker AT, Habibi G, Werfel J, et al (2013) Massive uniform manipulation:
Controlling large populations of simple robots with a common input signal. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp
520–527, https://doi.org/10.1109/IROS.2013.6696401

[6] Becker AT, Demaine ED, Fekete SP, et al (2014) Reconfiguring massive particle
swarms with limited, global control. In: Algorithms for Sensor Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 51–66

[7] Becker AT, Demaine ED, Fekete SP, et al (2014) Particle computation: Designing
worlds to control robot swarms with only global signals. In: IEEE International
Conference on Robotics and Automation, ICRA’14, pp 6751–6756, https://doi.
org/10.1109/ICRA.2014.6907856

20

https://doi.org/10.1137/1.9781611975482.167
https://doi.org/10.1137/1.9781611975994.160
https://doi.org/10.1109/IROS.2013.6696401
https://doi.org/10.1109/ICRA.2014.6907856
https://doi.org/10.1109/ICRA.2014.6907856

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

[8] Caballero D, Cantu AA, Gomez T, et al (2020) Building patterned shapes in
robot swarms with uniform control signals. In: Proceedings of the 32nd Canadian
Conference on Computational Geometry, CCCG’20, pp 59–62

[9] Caballero D, Cantu AA, Gomez T, et al (2020) Hardness of reconfiguring robot
swarms with uniform external control in limited directions. Journal of Information
Processing 28:782–790

[10] Caballero D, Cantu AA, Gomez T, et al (2020) Relocating units in robot swarms
with uniform control signals is pspace-complete. In: Proceedings of the 32nd
Canadian Conference on Computational Geometry, CCCG’20, pp 49–55

[11] Caballero D, Cantu A, Gomez T, et al (2021) Fast reconfiguration of robot swarms
with uniform control signals. Natural Computing 20:1–11. https://doi.org/10.
1007/s11047-021-09864-0

[12] Caballero D, Cantu AA, Gomez T, et al (2021) Unit tilt row relocation in a square
(short abstract). In: Proceedings of the 23rd Thailand-Japan Conference on Dis-
crete and Computational Geometry, Graphs, and Games, TJCDCG3’2020+1, pp
122–123

[13] Caballero D, Cantu AA, Gomez T, et al (2023) Uniform robot relocation is hard
in only two directions even without obstacles. In: Unconventional Computation
and Natural Computation. Springer Nature Switzerland, Cham, UCNC’23, pp
17–31

[14] Chiang PT, Mielke J, Godoy J, et al (2012) Toward a light-driven motorized
nanocar: Synthesis and initial imaging of single molecules. ACS Nano 6(1):592–
597. https://doi.org/10.1021/nn203969b, pMID: 22129498

[15] Felfoul O, Mohammadi M, Gaboury L, et al (2011) Tumor targeting by computer
controlled guidance of magnetotactic bacteria acting like autonomous micro-
robots. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp 1304–1308, https://doi.org/10.1109/IROS.2011.6094991

[16] Martel S (2012) Bacterial microsystems and microrobots. In: Biomedical Microde-
vices, pp 1033–1045, https://doi.org/10.1007/s10544-012-9696-x

[17] Martel S, Taherkhani S, Tabrizian M, et al (2014) Computer 3d controlled bacte-
rial transports and aggregations of microbial adhered nano-components. Journal
of Micro-Bio Robotics 9(1):23–28. https://doi.org/10.1007/s12213-014-0076-x

[18] Shirai Y, Osgood AJ, Zhao Y, et al (2005) Directional control in thermally
driven single-molecule nanocars. Nano Letters 5(11):2330–2334. https://doi.org/
10.1021/nl051915k, pMID: 16277478

21

https://doi.org/10.1007/s11047-021-09864-0
https://doi.org/10.1007/s11047-021-09864-0
https://doi.org/10.1021/nn203969b
https://doi.org/10.1109/IROS.2011.6094991
https://doi.org/10.1007/s10544-012-9696-x
https://doi.org/10.1007/s12213-014-0076-x
https://doi.org/10.1021/nl051915k
https://doi.org/10.1021/nl051915k

	Introduction
	Related Work
	Contributions

	Preliminaries
	2-Direction NP-Hard Relocation
	Layout.
	Force Moves.
	Gadgets.
	Clause Spaces.
	System Output.
	Relocation Membership.

	Row Relocation
	Formal Definitions
	Existence Properties
	Changing the Knitting Row
	Analysis of NL
	Analysis of NR
	First Row Relocation Algorithm

	Conclusion

