Skip to main content

Extraction Rates of Random Continuous Functionals

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14003))

  • 270 Accesses

Abstract

In this article, we study the extraction rate, or output/input rate, of algorithmically random continuous functionals on the Cantor space \(2^\omega \). It is shown that random functionals have an average extraction rate over all inputs corresponding to the rate of producing a single bit of output, and that this average rate is attained for any (relatively) random input.

This research was partially supported by the National Science Foundation SEALS grant DMS-1362273.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algorithmic randomness of continuous functions. Arch. Math. Logic 46(7–8), 533–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals Math. Stat. 23(4), 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cenzer, D., Porter, C.P.: Algorithmically Random Functions and Effective Capacities. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 23–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_4

    Chapter  MATH  Google Scholar 

  4. Cenzer, D., Porter, C.P.: Randomness extraction in computability theory. Computability (2022). https://doi.org/10.3233/COM-210343

    Article  Google Scholar 

  5. Cenzer, D., Rojas, D.A.: Online Computability and Differentiation in the Cantor Space. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 136–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_14

    Chapter  MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Springer (2010). https://doi.org/10.1007/978-0-387-68441-3

  7. Franklin, J.N.Y., Porter, C.P.: Key developments in algorithmic randomness. In Johanna N.Y. Franklin and Christopher P. Porter, editors, Algorithmic Randomness: Progress and Prospects, volume 50 of Lecture Notes in Logic. Cambridge University Press (2020)

    Google Scholar 

  8. Steven M. Kautz. Degrees of random sets. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-Cornell University

    Google Scholar 

  9. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation. In: Algorithms and complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1976), pp. 357–428 (1976)

    Google Scholar 

  10. Levin, L., Zvonkin, A.K.: The complexity of finite objects and the development of the concepts of information and randomness of means of the theory of algorithms. Uspekhi Mat. Nauk 25, 85–127 (1970)

    MATH  Google Scholar 

  11. Nies, A.: Computability and randomness, volume 51 of Oxford Logic Guides. Oxford University Press (200

    Google Scholar 

  12. Peres, Y.: Iterating von Neumann’s procedure for extracting random bits. Ann. Statist. 20, 590–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, A., Uspensky, V.A., Vereshchagin., N.: Kolmogorov complexity and algorithmic randomness, vol. 220. American Mathematical Soc (2017)

    Google Scholar 

  14. Van Lambalgen, M.: The axiomatization of randomness. J. Symbolic Logic 55(3), 1143–1167 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neumann, J.v.: Various techniques used in connection with random digits. Appl. Math Series 12, 36–38 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cenzer, D., Fraize, C., Porter, C. (2023). Extraction Rates of Random Continuous Functionals. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34034-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34033-8

  • Online ISBN: 978-3-031-34034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics