Skip to main content

Social Network Analysis to Accelerate for R&D of New Material Development

  • Conference paper
  • First Online:
Knowledge Management in Organisations (KMO 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1825))

Included in the following conference series:

  • 763 Accesses

Abstract

A feasibility study on the technology and market trends of organoids was conducted by analyzing information using published patent information and network analysis. It was found that the organoid market exhibits a scale-free network structure among complex networks, and that Japanese research is isolated and domestic-only. On the other hand, the largest research clusters were found to have research institutions with structural holes, indicating that collaboration with foreign research institutions with such holes is desirable to accelerate Japanese research. This suggests the effectiveness of an analytical method that combines patent analysis and network analysis for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hutchinson, L., Kirk, R.: High drug attrition rates-where are we going wrong? Nat. Rev. Clin. Oncol. 8(4), 189–190 (2011)

    Article  Google Scholar 

  2. Sato, T., et al.: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244), 262-U147 (2009)

    Article  Google Scholar 

  3. Sato, T., et al.: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5), 1762–1772 (2011)

    Article  Google Scholar 

  4. Dekkers, J.F., et al.: Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8(344), 344–384 (2016)

    Article  Google Scholar 

  5. Vlachogiannis, G., et al.: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378), 920–931 (2018)

    Article  Google Scholar 

  6. Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467), 338–345 (2013)

    Article  Google Scholar 

  7. Chen, Z.Y., et al.: EGFR mutation heterogeneity and the mixed response to EGFR tyrosine kinase inhibitors of lung adenocarcinomas. Oncologist. 17, 978–985 (2012)

    Article  Google Scholar 

  8. Mroz, E.A., Tward, A.D., Pickering, C.R., Myers, J.N., Ferris, R.L., Rocco, J.W.: High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119, 3034–3042 (2013)

    Article  Google Scholar 

  9. Van de Wetering, M., et al.: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4), 933–945 (2015)

    Article  Google Scholar 

  10. Roerink, S.F., et al.: Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556(7702), 457–463 (2018)

    Article  Google Scholar 

  11. Brandenberg, N., et al.: High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4(9), 863–876 (2020)

    Article  Google Scholar 

  12. Decembrini, S., Hoehnel, S., Brandenberg, N., Arsenijevic, Y., Lutolf, M.P.: Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures. Sci. Rep. 10, 10275 (2020)

    Article  Google Scholar 

  13. Hosokawa, M., Arakaki, A., Takahashi, M., Mori, T., Takeyama, H., Matsunaga, T.: High-density microcavity array for cell detection: single-cell analysis of hematopoietic stem cells in peripheral blood mononuclear cells. Anal. Chem. 81(13), 5308–5313 (2009)

    Article  Google Scholar 

  14. Osada, K., Hosokawa, M., Yoshino, T., Tanaka, T.: Monitoring of cellular behaviors by microcavity array-based single-cell patterning. Analyst. 139(2), 425–430 (2014)

    Article  Google Scholar 

  15. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  16. Nieman, U.J.: On the centrality in a directed graph. Soc. Sci. Res. 2(4), 371–378 (1973)

    Article  Google Scholar 

  17. Boissevain, J.: Towards a sociology of social anthropology. Theory Soc. 1, 211–230 (1974)

    Article  Google Scholar 

  18. Freeman, L.C.: A set of measures od centrality based on betweeness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  19. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978)

    Article  Google Scholar 

  20. Coleman, J.S.: Social capital in the creation of human capital. Am. J. Sociol. 94, S95–S120 (1988)

    Article  Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘Small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  22. Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge, Mass (1992)

    Google Scholar 

  23. Fleming, L., Mingo, S., Chen, D.: Collaborative brokerage, generative creativity, and creative success. Adm. Sci. Q. 52, 443–475 (2007)

    Article  Google Scholar 

  24. Kishi, N.: Network characteristics and product development performance, p 218. MMRC Discussion paper (2008)

    Google Scholar 

  25. Konno, N.: Complex network Tokyo Japan Kindai Kagakusya (2010)

    Google Scholar 

  26. Biagini, F., Kauermann, G., Meyer-Brandis, T. (eds.): Network Science. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26814-5

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Hayashida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hayashida, H., Funashima, H. (2023). Social Network Analysis to Accelerate for R&D of New Material Development. In: Uden, L., Ting, IH. (eds) Knowledge Management in Organisations. KMO 2023. Communications in Computer and Information Science, vol 1825. Springer, Cham. https://doi.org/10.1007/978-3-031-34045-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34045-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34044-4

  • Online ISBN: 978-3-031-34045-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics