Skip to main content

Optimal Controller Selection Scheme Using Artificial Bee Colony and Apriori Algorithms in SDN

  • Conference paper
  • First Online:
Knowledge Management in Organisations (KMO 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1825))

Included in the following conference series:

  • 794 Accesses

Abstract

Software Defined Networking (SDN) is one of the most recent Internet technology that manages the large scale network. SDN decouples the control plane from data plane, which simplifies the logic of network devices and reduces the cost of the network infrastructure. The control plane is the key component of a network which ensures smooth management and operation of the entire network. Distributed SDN controllers have been proposed to solve the scalability and a single point of failure problem. It is a critical issue for the switch to find the optimal controller among the distributed controllers. In this paper we propose a novel scheme for controller selection in distributed SDN environments. The proposed scheme decides optimal controller from distributed controllers by applying the Artificial Bee Colony (ABC) algorithm for meta-heuristic search and Apriori algorithm for effective association rule mining between switch and controller. Computer simulation reveals that the proposed scheme consistently outperforms the scheme employing only ABC and Apriori algorithms separately in terms of response time, arrival rate, number of messages, and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, A., Zha, Z., Guo, Y., Chen, S.: Software defined networking (SDN) enhanced edge computing: a network centric survey. Proc. IEEE 107(8), 1500–1519 (2019)

    Article  Google Scholar 

  2. European Telecommunication Standards Institute, Mobile Edge Computing (MEC), Technical Requirements (ETSI GS MEC 002 V.1.1.1) (2016). https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_MEC002v010101p.pdf. Accessed 10 Jan 2023

  3. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  4. Lee, C.H., Park, J.S.: An SDN-based packet scheduling scheme for transmitting emergency data in mobile edge computing environments. Hum.-Cent. Comput. Inf. Sci. 11(28), 2–15 (2021)

    Google Scholar 

  5. Open Networking Foundation, Software-Defined Networking (SDN) definition (2021). https://www.opennetworking.org/sdn-definition/. Accessed 10 Jan 2023

  6. Shamsan, A.H., Faridi, A.R.: SDN-assisted IoT architecture: a review. In: Proceeding of the 4th International Conference on Computing Communication and Automation (ICCCA), pp. 1–7 (2018)

    Google Scholar 

  7. Lv, Z., Xiu, W.: Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Internet Things J. 7(7), 5706–5712 (2019)

    Article  Google Scholar 

  8. Kirkpatrick, K.: Software-defined networking. Commun. ACM 56(9), 16–19 (2013)

    Article  Google Scholar 

  9. Khan, S., et al.: Software-defined network forensics: motivation, potential locations, requirements, and challenges. IEEE Netw. 30(6), 6–13 (2016)

    Article  Google Scholar 

  10. Balakiruthiga, B., Deepalakshmi, P.A.: Distributed energy aware controller placement model for software-defined data centre network. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1083–1101 (2021)

    Article  Google Scholar 

  11. Radam, N.S., Faraj, S.T., Jasim, K.S.: Multi-controllers placement optimization in SDN by the hybrid HSA-PSO algorithm. Computers 11(7), 1–26 (2022)

    Article  Google Scholar 

  12. Blial, O., Mamoun, M.B., Benaini, R.: An overview on SDN architectures with multiple controllers. J. Comput. Netw. Commun. 2016(2), 1–8 (2016)

    Google Scholar 

  13. Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D.C., Gayraud, T.: Software-defined networking: challenges and research opportunities for future internet. Comput. Netw. 75(24), 453–471 (2014)

    Article  Google Scholar 

  14. Xiao, L., Zhu, H., Xiang, S., Vinh, P.C.: Modeling and verifying SDN under Multi-controller architectures using CSP. Concurr. Comput. Pract. Exp. 1–17 (2019)

    Google Scholar 

  15. Sahoo, K.S., et al.: ESMLB: efficient switch migration-based load balancing for multicontroller SDN in IoT. IEEE Internet Things J. 7(7), 5852–5860 (2020)

    Article  Google Scholar 

  16. Xue, H., Kim, K.T., Youn, H.: Dynamic load balancing of software-defined networking based on genetic-ant colony optimization. Sensors 19(2), 1–17 (2019)

    Article  Google Scholar 

  17. Ahmad, S., Mir, A.H.: SDN Interfaces: protocols, taxonomy and challenges. Int. J. Wirel. Microwave Technol. 2, 11–32 (2022)

    Article  Google Scholar 

  18. Farhady, H., Lee, H., Nakao, A.: Software-defined networking: a survey. Comput. Netw. 81, 79–95 (2015)

    Article  Google Scholar 

  19. OpenDaylight Association, Opendaylight. https://www.opendaylight.org/. Accessed 12 Jan 2023

  20. Eftimie, A., Borcoci, E.: SDN controller implementation using OpenDaylight: experiments. In: Proceedings of the 13th International Conference on communications, Bucharest, pp. 1–5 (2020)

    Google Scholar 

  21. Clemm, A.: Navigating device management and control interfaces in the age of SDN (2014). http://blogs.cisco.com/getyourbuildon/navigating-device-managementand-control-interfaces-in-the-age-of-sdn. Accessed 13 Jan 2023

  22. Wallin, S., Wikstrom, C.: Automating network and service configuration using NETCONF and YANG. In: Proceedings of the 25th Large Installation System Administration (LISA), pp. 1–13 (2011)

    Google Scholar 

  23. Application centric infrastructure object-oriented data model: gain advanced network control and programmability. http://docplayer.net/15876333-Application-centric-infrastructure-object-oriented-data-model-gain-advanced-network-control-and-programmability.html. Accessed 13 Jan 2023

  24. Cisco Systems, The Cisco Application Policy Infrastructure Controller. https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/aci-fabric-controller/at-a-glance-c45-730001.html. Accessed 12 Jan 2023

  25. Alghamdi, A., Paul, D., Sadgrove, E.: Designing a RESTful northbound interface for incompatible software defined network controllers. SN Comput. Sci. 3, 1–7 (2022)

    Article  Google Scholar 

  26. Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network configuration protocol (NETCONF) (2011). https://www.rfc-editor.org/rfc/rfc6241. Accessed 12 Jan 2023

  27. Bierman, A., Bjorklund, M., Watsen, K., Fernando, R.: RESTCONF protocol, draft-bierman-netconf-restconf-04 (2014). https://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/. Accessed 12 Jan 2023

  28. Jethanandani, M.: YANG, NETCONF, RESTCONF: what is this all about and how is it used for multi-layer networks. In: Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, pp. 1–65 (2017)

    Google Scholar 

  29. Bjorklund, M.: YANG - a data modeling language for the network configuration protocol (NETCONF), RFC 6020. https://www.rfc-editor.org/rfc/rfc6020. Accessed 12 Jan 2023

  30. Karaboga, D.: Artificial bee colony algorithm. Scholarpedia (2010)

    Google Scholar 

  31. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  32. Zareian, M.M., Mesbahb, M., Moradic, S., Ghateec, M.I.: A combined Apriori algorithm and fuzzy controller for simultaneous ramp metering and variable speed limit determination in a freeway. AUT J. Math. Comput. 3(2), 237–251 (2022)

    Google Scholar 

  33. Hu, X.G., Wang, D.X., Liu, X.P., Guo, J., Wang, H.: The analysis on model of association rules mining based on concept lattice and Apriori algorithm. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, pp. 1620–1624 (2004)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A1A01053800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Tae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, K.T. (2023). Optimal Controller Selection Scheme Using Artificial Bee Colony and Apriori Algorithms in SDN. In: Uden, L., Ting, IH. (eds) Knowledge Management in Organisations. KMO 2023. Communications in Computer and Information Science, vol 1825. Springer, Cham. https://doi.org/10.1007/978-3-031-34045-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34045-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34044-4

  • Online ISBN: 978-3-031-34045-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics