Skip to main content

An Unsupervised Framework for Joint MRI Super Resolution and Gibbs Artifact Removal

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

  • 3247 Accesses

Abstract

The k-space data generated from magnetic resonance imaging (MRI) is only a finite sampling of underlying signals. Therefore, MRI images often suffer from low spatial resolution and Gibbs ringing artifacts. Previous studies tackled these two problems separately, where super resolution methods tend to enhance Gibbs artifacts, whereas Gibbs ringing removal methods tend to blur the images. It is also a challenge that high resolution ground truth is hard to obtain in clinical MRI. In this paper, we propose an unsupervised learning framework for both MRI super resolution and Gibbs artifacts removal without using high resolution ground truth. Furthermore, we propose regularization methods to improve the model’s generalizability across out-of-distribution MRI images. We evaluated our proposed methods with other state-of-the-art methods on eight MRI datasets with various contrasts and anatomical structures. Our method not only achieves the best SR performance but also significantly reduces the Gibbs artifacts. Our method also demonstrates good generalizability across different datasets, which is beneficial to clinical applications where training data are usually scarce and biased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fastmri.org/dataset/.

  2. 2.

    https://bitbucket.org/fengshi421/superresolutiontoolkit.

References

  1. Ahn, N., Yoo, J., Sohn, K.A.: SimUSR: a simple but strong baseline for unsupervised image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 474–475 (2020)

    Google Scholar 

  2. Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans. Med. Imaging 21(4), 305–319 (2002)

    Article  Google Scholar 

  3. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. Adv. Neural Inf. Process. Syst. 32, 284–293 (2019)

    Google Scholar 

  4. Block, K.T., Uecker, M., Frahm, J.: Suppression of MRI truncation artifacts using total variation constrained data extrapolation. Int. J. Biomed. Imaging 2008, 1–8 (2008). https://doi.org/10.1155/2008/184123, http://www.hindawi.com/journals/ijbi/2008/184123/

  5. Chen, S., et al.: Unsupervised image super-resolution with an indirect supervised path. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

    Google Scholar 

  6. Chen, Y., Xie, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain MRI super resolution using 3D deep densely connected neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), no. Isbi, pp. 739–742. IEEE (2018). https://doi.org/10.1109/ISBI.2018.8363679, https://ieeexplore.ieee.org/document/8363679/

  7. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, vol. 2, pp. 2672–2680. MIT Press, Cambridge (2014)

    Google Scholar 

  8. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997). https://doi.org/10.1137/S0036144596301390

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, X., Zhang, Q., Wang, G., Guo, X., Li, Z.: Medical image super-resolution based on the generative adversarial network. In: Jia, Y., Du, J., Zhang, W. (eds.) CISC 2019. LNEE, vol. 593, pp. 243–253. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9686-2_29

    Chapter  Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Jerri, A.J.: Lanczos-like \(\sigma \)-factors for reducing the Gibbs phenomenon in general orthogonal expansions and other representations. J. Comput. Anal. Appl. 2, 111–127 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  13. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.: Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76(5), 1574–1581 (2016). https://doi.org/10.1002/mrm.26054, https://onlinelibrary.wiley.com/doi/10.1002/mrm.26054

  14. Kim, H., Kim, J., Won, S., Lee, C.: Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech. 910, A29 (2021)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  16. Lempitsky, V., Vedaldi, A., Ulyanov, D.: Deep image prior. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018). https://doi.org/10.1109/CVPR.2018.00984

  17. Lyu, J., et al.: Toward single breath-hold whole-heart coverage compressed sensing MRI using VAriable spatial-temporal LAtin hypercube and echo-sharing (VALAS). In: ISMRM (2019)

    Google Scholar 

  18. Lyu, Q., Shan, H., Wang, G.: MRI super-resolution with ensemble learning and complementary priors. IEEE Trans. Comput. Imaging 6, 615–624 (2020). https://doi.org/10.1109/tci.2020.2964201

    Article  Google Scholar 

  19. Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30–39 (2019). https://doi.org/10.1016/j.compmedimag.2018.10.005

    Article  Google Scholar 

  20. Mataev, G., Milanfar, P., Elad, M.: DeepRED: deep image prior powered by RED. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  21. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2445 (2020)

    Google Scholar 

  22. Muckley, M.J., et al.: Training a neural network for gibbs and noise removal in diffusion MRI, pp. 1–18 (2019). https://doi.org/10.1002/mrm.28395, http://arxiv.org/abs/1905.04176

  23. Pham, C.H., et al.: Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput. Med. Imaging Graph. 77 (2019). https://doi.org/10.1016/j.compmedimag.2019.101647

  24. Ravì, D., Szczotka, A.B., Pereira, S.P., Vercauteren, T.: Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy. Med. Image Anal. 53, 123–131 (2019). https://doi.org/10.1016/j.media.2019.01.011

    Article  Google Scholar 

  25. Shi, F., Cheng, J., Wang, L., Yap, P.T., Shen, D.: LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med. Imaging 34(12), 2459–2466 (2015). https://doi.org/10.1109/TMI.2015.2437894

    Article  Google Scholar 

  26. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 1874–1883 (2016). https://doi.org/10.1109/CVPR.2016.207

  27. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2017). https://doi.org/10.1109/CVPR.2018.00329, http://arxiv.org/abs/1712.06087

  28. Umehara, K., Ota, J., Ishida, T.: Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J. Digit. Imaging 31(4), 441–450 (2017). https://doi.org/10.1007/s10278-017-0033-z

    Article  Google Scholar 

  29. Yu, J., Fan, Y., Huang, T.: Wide activation for efficient image and video super-resolution. In: 30th British Machine Vision Conference 2019, BMVC 2019, pp. 1–13 (2020)

    Google Scholar 

  30. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 814–81409 (2018). https://doi.org/10.1109/CVPRW.2018.00113

  31. Zbontar, J., et al.: fastMRI: An open dataset and benchmarks for accelerated MRI. CoRR abs/1811.08839 (2018). http://arxiv.org/abs/1811.08839

  32. Zhang, Q., et al.: MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Magn. Reson. Med. 82(6), 2133–2145 (2019). https://doi.org/10.1002/mrm.27894

    Article  MathSciNet  Google Scholar 

  33. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security, WIFS 2019 (2019). https://doi.org/10.1109/WIFS47025.2019.9035107

  34. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for image processing, pp. 1–11 (2015). http://arxiv.org/abs/1511.08861

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhui Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Chen, E.Z., Chen, X., Chen, T., Sun, S. (2023). An Unsupervised Framework for Joint MRI Super Resolution and Gibbs Artifact Removal. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics