Skip to main content

Super-Resolution Reconstruction of Fetal Brain MRI with Prior Anatomical Knowledge

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Super-resolution reconstruction (SRR) of fetal brain MRI from motion-corrupted thick-slice stacks can provide high-resolution isotropic 3D images that are vital for prenatal examination and quantification of brain development. Existing fetal brain SRR methods generally rely on a two-stage optimization procedure by performing rigid slice-to-volume registration and volumetric reconstruction in an alternating manner. Despite their advantages, these methods have not considered additional guidance from external anatomical priors, resulting in unsatisfactory performance in various challenging cases. To address this issue, we propose a novel Prior Anatomical Knowledge guided fetal brain Super-Resolution Reconstruction method, namely PAK-SRR. In PAK-SRR, we consider two key kinds of prior anatomical information. First, we integrate the anatomical prior provided by tissue segmentation into both the slice-to-volume registration and volumetric reconstruction to enforce registration consistency on boundaries, effectively alleviating misregistration caused by blurry tissue boundaries of brain. Second, to enrich the structural details of the reconstructed images, we further employ longitudinal fetal brain atlases to guide volumetric reconstruction. Extensive experiments on multi-site clinical datasets demonstrate that our PAK-SRR significantly outperforms the state-of-the-art SRR methods for fetal brain MRI, quantitatively and qualitatively. Our code is publicly available at https://github.com/sj-huang/PAK-SRR for reproducibility and further research.

S. Huang and G. Chen— Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14(3), 227–248 (1980)

    Article  Google Scholar 

  2. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage 206, 116324 (2020)

    Article  Google Scholar 

  3. Fong, D.C.L., Saunders, M.: LSMR: an iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput. 33(5), 2950–2971 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garel, C.: MRI of the Fetal Brain: Normal Development and Cerebral Pathologies. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18747-6

  5. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)

    Article  Google Scholar 

  6. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hou, B., et al.: 3-D reconstruction in canonical co-ordinate space from arbitrarily oriented 2-D images. IEEE Trans. Med. Imaging 37(8), 1737–1750 (2018)

    Article  Google Scholar 

  8. Kim, K., et al.: Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction. IEEE Trans. Med. Imaging 30(9), 1704–1712 (2011)

    Article  Google Scholar 

  9. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  10. Li, G., Nie, J., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24(5), 1289–1300 (2014)

    Article  Google Scholar 

  11. Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. “The” Institute of Electrical and Electronics Engineers Press (2000)

    Google Scholar 

  12. Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014)

    Article  Google Scholar 

  13. Rousseau, F., et al.: Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad. Radiol. 13(9), 1072–1081 (2006)

    Article  Google Scholar 

  14. Rousseau, F., et al.: BTK: an open-source toolkit for fetal brain MR image processing. Comput. Methods Programs Biomed. 109(1), 65–73 (2013)

    Article  Google Scholar 

  15. Shi, W., et al.: AFFIRM: affinity fusion-based framework for iteratively random motion correction of multi-slice fetal brain MRI. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  16. Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. Neuroimage 58(3), 805–817 (2011)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  18. Xu, J., Moyer, D., Grant, P.E., Golland, P., Iglesias, J.E., Adalsteinsson, E.: SVoRT: iterative transformer for slice-to-volume registration in fetal brain MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). LNCS, vol. 13436, pp. 3–13. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_1

  19. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans. Med. Imaging 40(3), 805–817 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (grant number 62131015), Science and Technology Commission of Shanghai Municipality (STCSM) (grant number 21010502600), and The Key R &D Program of Guangdong Province, China (grant number 2021B0101420006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S. et al. (2023). Super-Resolution Reconstruction of Fetal Brain MRI with Prior Anatomical Knowledge. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics